Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 750: 141233, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32858286

ABSTRACT

Heavy metals pollutants are global concern due to their toxicities and persistence in the environment. Cd isotope signatures in soils and sediments change during weathering, and it remains unclear if Cd isotopes can effectively trace Cd sources in a riverine system. In this study, we investigate Cd concentration and its isotope compositions, as well as other heavy metals of sediments and related potential Cd sources in a riverine system. The results showed that the two river sediments evaluated were moderately polluted by Zn, Cr, and Cd, while the source samples (soil, sludge, waste, and raw materials) were seriously polluted by heavy metals derived from anthropogenic activities. According to comprehensive ecological risks, the two sediments have a moderate to low potential risk and more than half of all anthropogenic activities in the study area were at considerable or moderate potential risk. We determined that Cd pollution in river sediments was primarily derived from sewage treatment and outlets based on river flow direction and the isotope geochemical behaviors of the Cd isotope in nature conditions. This study further confirmed that analyzing Cd isotopes could be a powerful tool for tracing the source and destination of environmental Cd for multiple sources with similar Cd concentrations.

2.
Anal Methods ; 12(48): 5916-5921, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33290456

ABSTRACT

A simple, accurate and reliable analytical method for simultaneous determination of chlorite, chlorate, perchlorate and bromate in ozonated saline by using ion chromatography coupled with triple quadrupole mass spectrometry (IC-MS) has been developed. The use of silver (Ag) and hydrogen (H) OnGuard cartridges and 100-fold dilution were found to be simple and effective for sample pretreatment. Under optimized MS parameters, method validation was convincingly confirmed. A good linearity was obtained with regression correlation coefficients (R2) larger than 0.999. The mean relative recoveries of chlorite (ClO2-), chlorate (ClO3-), perchlorate (ClO4-), and bromate (BrO3-) ranged from 79.96 to 97.63%. The obtained limit of detection (LOD) was 1.00 µg L-1 for ClO2-, 0.10 µg L-1 for ClO3-, 0.04 µg L-1 for ClO4-, and 0.50 µg L-1 for BrO3-. Chlorate and bromate were only detected in ozonated samples. In addition, the concentration of chlorate and bromate was in direct proportion to the amount of ozone in saline.

SELECTION OF CITATIONS
SEARCH DETAIL
...