Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 4(6): 775-790, 2022 06.
Article in English | MEDLINE | ID: mdl-35760872

ABSTRACT

Obesity induces chronic inflammation resulting in insulin resistance and metabolic disorders. Cold exposure can improve insulin sensitivity in humans and rodents, but the mechanisms have not been fully elucidated. Here, we find that cold resolves obesity-induced inflammation and insulin resistance and improves glucose tolerance in diet-induced obese mice. The beneficial effects of cold exposure on improving obesity-induced inflammation and insulin resistance depend on brown adipose tissue (BAT) and liver. Using targeted liquid chromatography with tandem mass spectrometry, we discovered that cold and ß3-adrenergic stimulation promote BAT to produce maresin 2 (MaR2), a member of the specialized pro-resolving mediators of bioactive lipids that play a role in the resolution of inflammation. Notably, MaR2 reduces inflammation in obesity in part by targeting macrophages in the liver. Thus, BAT-derived MaR2 could contribute to the beneficial effects of BAT activation in resolving obesity-induced inflammation and may inform therapeutic approaches to combat obesity and its complications.


Subject(s)
Adipose Tissue, Brown , Insulin Resistance , Adipose Tissue, Brown/metabolism , Animals , Docosahexaenoic Acids , Inflammation/metabolism , Mice , Obesity/metabolism
2.
Expert Opin Pharmacother ; 20(5): 609-620, 2019 04.
Article in English | MEDLINE | ID: mdl-30722707

ABSTRACT

INTRODUCTION: Asthma is a common chronic airway inflammatory disease characterized by diverse inflammatory events leading to airway hyperresponsiveness and reversible airflow obstruction. Corticosteroids have been the mainstay for asthma treatment due to their broad anti-inflammatory actions; however, other medications such as phosphodiesterase 4 inhibitors also demonstrate anti-inflammatory activity in the airways. AREAS COVERED: This review describes tissue expression of phosphodiesterase 4 in the airways, the different phosphodiesterase 4 isoenzymes identified, and the anti-inflammatory activities of phosphodiesterase 4 inhibition in asthma and related findings in chronic obstructive pulmonary disease (COPD). The authors further review clinical trials demonstrating that drugs such as roflumilast have an excellent safety profile and efficacy in patients with asthma and COPD. EXPERT OPINION: Phosphodiesterase 4 inhibitors suppress the activity of immune cells, an effect similar to corticosteroids although by acting through different anti-inflammatory pathways and uniquely blocking neutrophilic inflammation. Roflumilast and other phosphodiesterase 4 inhibitors have been shown to provide additive protection in asthma when added to corticosteroid and anti-leukotriene treatment. Developmental drugs with dual phosphodiesterase 3 and 4 inhibition are thought to be able to provide bronchodilation and anti-inflammatory activities and will consequently be pushed forward in their clinical development for the treatment of asthma and COPD.


Subject(s)
Aminopyridines/therapeutic use , Asthma/drug therapy , Benzamides/therapeutic use , Phosphodiesterase 4 Inhibitors/therapeutic use , Cyclic Nucleotide Phosphodiesterases, Type 4/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclopropanes/therapeutic use , Humans , Inflammation/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...