Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Vet Immunol Immunopathol ; 111(3-4): 211-8, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16621018

ABSTRACT

The hemagglutinin (HA) gene of A/Swine/Inner Mogolian/547/2001 (H3N2) swine influenza virus (SIV) was recombined into the genome of pseudorabies virus (PRV) Bartha-K61 vaccine strain, generating a recombinant PRV expressing the HA gene, designated as rPRV-HA. One group of 15 mice was inoculated intranasally (i.n.) with 10(5.0) PFU of rPRV-HA, and another two control groups of mice (15 mice per group) were mock-inoculated or inoculated with Bartha-K61. Mice inoculated with rPRV-HA developed hemagglutination inhibition antibodies 3 weeks post-inoculation. Twenty-eight days post-inoculation, all mice were challenged i.n. with 10(5.0) TCID50 of A/Swine/Heilongjiang/74/2000 (H3N2). No challenge virus was isolated from vaccinated mice, and mild pathological lesions were observed only in lungs following challenge. The results demonstrate that the recombinant rPRV-HA expressing the HA gene from H3N2 SIV can protect mice from heterologous virulent challenge, and may represent a candidate vaccine against SIV.


Subject(s)
Hemagglutinins/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Lung Diseases/veterinary , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Swine Diseases/prevention & control , Swine Diseases/virology , Animals , Antibodies, Viral/blood , Base Sequence , Chick Embryo , Chlorocebus aethiops , Hemagglutination Inhibition Tests/veterinary , Hemagglutinins/genetics , Herpesvirus 1, Suid/genetics , Histocytochemistry/veterinary , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/pharmacology , Lung Diseases/immunology , Lung Diseases/prevention & control , Lung Diseases/virology , Mice , Molecular Sequence Data , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Random Allocation , Swine , Swine Diseases/immunology , Vaccination/veterinary , Vero Cells
2.
Vaccine ; 24(7): 1028-34, 2006 Feb 13.
Article in English | MEDLINE | ID: mdl-16388880

ABSTRACT

BACKGROUND: In 2003, severe acute respiratory syndrome (SARS) resulted in hundreds of infections and deaths globally. We aim to assess immunogenicity and protective efficacy of purified inactivated Vero-cell SARS vaccine in monkeys. METHODS: The cultures of SARS coronavirus (SARS-CoV) BJ-01 strain infected Vero cells were inactivated with beta-propiolactone. Sequential procedures, including ultrafiltration, gel filtration and ion exchange chromatography, were performed to obtain purified inactivated SARS vaccine. The purified SARS vaccine was analyzed with electron microscope, HPLC and Western blotting. We immunized three groups of cynomolgus macaques fascicularis with adjuvant-containing purified vaccine, purified vaccine and unpurified vaccine, respectively, and a fourth group served as a control. Antibody titers were measured by plaque reduction neutralization test. The vaccinated monkeys were challenged with SARS-CoV BJ-01 strain to observe protective efficacy. Additionally, three groups of rhesus monkeys were immunized with different doses of the purified inactivated SARS vaccine (0.5, 1 and 2mug/time/monkey) on days 0 and 7, and the monkeys were challenged with SARS-CoV GZ-01 strain. We assessed the safety of the SARS vaccine and observed whether the antibody dependent enhancement (ADE) occurred under low levels of neutralizing antibody in rhesus. FINDINGS: The purity of SARS vaccine was 97.6% by HPLC identification and reacted with convalescent sera of SARS patients. The purified SARS vaccine induced high levels of neutralizing antibodies and prevented the replication of SARS-CoV in monkeys. Under low levels of neutralizing antibody, no exacerbation of clinical symptoms was observed when the immunized monkeys were challenged with SARS-CoV. In this preliminary animal trial, no side effects were detected when monkeys were immunized with purified SARS vaccine either at normal or large doses. INTERPRETATION: The purified inactivated SARS vaccine could induce high levels of neutralizing antibody, and protect the monkeys from the challenge of SARS-CoV. The SARS vaccine prepared in the study appeared to be safe in monkeys.


Subject(s)
Severe acute respiratory syndrome-related coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Chlorocebus aethiops , Dose-Response Relationship, Immunologic , Immunization , Macaca fascicularis , Male , Severe Acute Respiratory Syndrome/prevention & control , Vaccines, Inactivated/immunology , Vero Cells , Viral Vaccines/adverse effects
3.
J Virol ; 79(4): 2620-5, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15681462

ABSTRACT

Severe acute respiratory syndrome (SARS) was caused by a novel virus now known as SARS coronavirus (SARS-CoV). The discovery of SARS-CoV-like viruses in masked palm civets (Paguma larvata) raises the possibility that civets play a role in SARS-CoV transmission. To test the susceptibility of civets to experimental infection by different SARS-CoV isolates, 10 civets were inoculated with two human isolates of SARS-CoV, BJ01 (with a 29-nucleotide deletion) and GZ01 (without the 29-nucleotide deletion). All inoculated animals displayed clinical symptoms, such as fever, lethargy, and loss of aggressiveness, and the infection was confirmed by virus isolation, detection of viral genomic RNA, and serum-neutralizing antibodies. Our data show that civets were equally susceptible to SARS-CoV isolates GZ01 and BJ01.


Subject(s)
Cat Diseases/physiopathology , Disease Susceptibility , Severe Acute Respiratory Syndrome/physiopathology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Animals , Cat Diseases/transmission , Cats , Disease Models, Animal , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/virology , Viverridae
4.
Wei Sheng Wu Xue Bao ; 44(6): 711-6, 2004 Dec.
Article in Chinese | MEDLINE | ID: mdl-16110944

ABSTRACT

To screen small animals susceptible to SARS-CoV, five species of animals, including guinea pig, hamster, albino hamster, chicken and rat, were experimentally infected with SARS-CoV strain BJ-01 by different routes. On the basis of this, further cynomolgus and rhesus macaques were selected and experimentally inoculated SARS-CoV, the quality they serve as animal model for SARS was evaluated. The results showed that, all five species of small animals chosed were not susceptible to SARS-CoV, no characterized changes in clinical sign and histopathology were observed after infection, but from the lung samples of large rat and pig guinea, the genomic RNA of SARS-CoV could be detected by RT-PCR at day 14 post infection, this suggested that SARS-CoV could replicate in these animals. After inoculated with SARS-CoV, all inoculated cynomolgus and rhesus macaques had developed interstitial pneumonia of differing severity. These changes on histopathology were similar to that seen in SARS patients, but the pathological lesions were less severe than that of human. Except interstitial pneumonia, no other characterized pathological changes were observed. This suggested cynomolgus and rhesus macaques were not the ideal animal model for SARS in fact, but they could serve as animal model for SARS when a more ideal animal model is absent.


Subject(s)
Disease Models, Animal , Severe Acute Respiratory Syndrome/virology , Animals , Chickens , Humans , Macaca fascicularis , Macaca mulatta , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Severe Acute Respiratory Syndrome/pathology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...