Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Hum Gene Ther ; 33(11-12): 625-637, 2022 06.
Article in English | MEDLINE | ID: mdl-35171714

ABSTRACT

Hair follicle stem cells (HFSCs) are responsible for hair growth and hair follicle regeneration. MicroRNAs have been demonstrated to be involved in the differentiation of HFSCs. Thus, this study aimed to explore the potential role of miR-149 in the differentiation of HFSCs. The isolated HFSCs were identified by flow cytometric sorting. miR-149 expression was determined during differentiation of HFSCs. Gain- and loss-of-function approaches were conducted to explore the roles of miR-149, MAPK1/ERK2, and FGF2/c-MYC in colony formation and proliferation of HFSCs. Furthermore, in vivo assays were undertaken in miR-149 knockout mice to confirm their roles in HFSC differentiation. miR-149 was found to be downregulated during HFSC differentiation, and overexpressed miR-149 restricted the proliferation and differentiation of HFSCs. miR-149 was confirmed to target and inhibit MAPK1/ERK2, which was highly expressed in and positively associated with HFSC differentiation. The MAPK1/ERK2 promotion in HFSC differentiation was achieved by augmenting expression of FGF2 and c-MYC. The in vitro effects of miR-149 were validated in in vivo experiments. Taken together, upregulated miR-149 restricted HFSC differentiation and hair growth by targeting MAPK1/ERK2 to reduce expression of FGF2 and c-MYC, which sheds light on the underlying molecular mechanism of hair growth.


Subject(s)
Hair Follicle , MicroRNAs , Animals , Cell Differentiation/genetics , Fibroblast Growth Factor 2 , Hair Follicle/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Stem Cells
3.
Aging (Albany NY) ; 12(13): 12726-12739, 2020 07 12.
Article in English | MEDLINE | ID: mdl-32657761

ABSTRACT

Hair follicle stem cells (HFSCs) contribute to the regeneration of hair follicles (HFs), thus accelerating hair growth. microRNAs (miRs) are potential regulators in various cellular processes, including HFSC proliferation and differentiation. This study proposed a potential target, enhancer of zeste homolog 2 (EZH2) for facilitating hair growth, due to its function over HFSC activities by mediating the miR-22/serine/threonine kinase 40 (STK40)/myocyte enhancer factor 2 (MEF2)/alkaline phosphatase (ALP) axis. Gain- and loss-of-function approaches were adopted to explore the roles of EZH2, miR-22, and STK40 in the proliferation and apoptosis of HFSCs, along with the functional relevance of MEF2-ALP activity. STK40 was elevated during HFSC differentiation, which was found to facilitate HFSC proliferation, but impede their apoptosis by activating MEF2-ALP. Mechanically, miR-22 targeted and inversely regulated STK40, which inhibited MEF2-ALP activity to impede HFSC proliferation and differentiation. Moreover, EZH2 elevated the STK40 expression by repressing miR-22 to promote the proliferation and differentiation of HFSCs. Furthermore, in vivo experiments further validated the roles of EZH2 and STK40 on hair follicle neogenesis and hair growth. Collectively, EZH2 elevated the STK40 expression by downregulating miR-22, consequently accelerating differentiation of HFSCs and hair growth, which sheds light on the underlying molecular mechanism responsible for hair growth.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Hair Follicle/cytology , MicroRNAs/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Differentiation/genetics , Cells, Cultured , Enhancer of Zeste Homolog 2 Protein/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Protein Serine-Threonine Kinases/genetics , Stem Cells/metabolism
4.
J Cell Physiol ; 235(3): 2161-2170, 2020 03.
Article in English | MEDLINE | ID: mdl-31385607

ABSTRACT

MicroRNAs (miRNAs) have been validated as critical regulators in the development of melanoma. miR-140 was abnormally downregulated in uveal melanoma samples. However, the expression level and roles of miR-140-5p remain unclear in melanoma for now. We speculate that miR-140-5p is abnormally expressed and may play an important role in melanoma. The expressions of miR-140-5p and SOX4 messenger RNA were determined by quantitative real-time polymerase chain reaction assays. Western blot assays were employed to detect the expression levels of SOX4, Ki67, MMP-2, MMP-7, p-ß-catenin, c-Myc, cyclin D1, p65, and IκBα. Luciferase reporter assays were employed to elucidate the interaction between SOX4 and miR-140-5p. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) and transwell invasion assays were applied to evaluate capabilities of cell proliferation and invasion, respectively. Xenograft models of melanoma were established to verify the role and molecular basis of miR-140-5p. Immunohistochemical (IHC) assays were employed to measure the Ki67 and SOX4 at the protein level in xenografted melanoma tissues. Herein, these observations showed that, miR-140-5p was abnormally downregulated in melanoma tissues and cells, while SOX4 was upregulated. miR-140-5p directly targeted SOX4 and inhibited its expression in melanoma cells. miR-140-5p overexpression repressed melanoma cell proliferation and invasion and its effects were partially restored SOX4 overexpression. Moreover, miR-140-5p hindered melanoma growth in vivo by downregulating SOX4. Mechanistically, miR-140-5p suppressed activation of the Wnt/ß-catenin and NF-κB pathways by targeting SOX4. Our study concluded that miR-140-5p hindered cell proliferation, invasion, and tumorigenesis by targeting SOX4 via inactivation of the Wnt/ß-catenin and NF-κB signaling pathways in malignant melanoma, which provides an underlying molecular mechanism for the treatment for melanoma with miRNAs.


Subject(s)
Carcinogenesis/genetics , Cell Proliferation/genetics , Melanoma/genetics , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , SOXC Transcription Factors/genetics , Signal Transduction/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Mice , Mice, Nude , NF-kappa B/genetics , RNA, Long Noncoding/genetics , Up-Regulation/genetics , Uveal Neoplasms/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics
5.
Cell Biosci ; 8: 42, 2018.
Article in English | MEDLINE | ID: mdl-30013768

ABSTRACT

BACKGROUND: Long non-coding RNAs (LncRNAs) have been identified as critical regulators in a variety of cancer types. Cancer susceptibility candidate 15 (CASC15), a lncRNA located at chromosome 6p22.3, has been discovered to participate in melanoma progression and phenotype switching. Nevertheless, the roles and molecular mechanisms of CASC15 in melanoma are far from being understood. RESULTS: We found that CASC15 expression was up-regulated in melanoma tissues and associated with advanced pathological stages. Function experiments displayed that CASC15 knockdown hindered proliferation, facilitated apoptosis and suppressed invasion, while CASC15 overexpression facilitated proliferation and invasion in melanoma cells. Further mechanistic analysis showed that CASC15 epigenetically silenced the expression of programmed cell death 4 (PDCD4) by recruiting EZH2 and increasing H3K27me3 level at the promoter region of PDCD4. Additionally, PDCD4 overexpression inhibited proliferation, enhanced apoptosis and decreased invasion of melanoma cells. Moreover, CASC15-knockdown-induced anti-cancer effects were abated by PDCD4 down-regulation. Furthermore, depletion of CASC15 blocked tumor growth of melanoma by up-regulating PDCD4 in vivo. CONCLUSIONS: CASC15 acts as an oncogene by negatively regulating PDCD4 expression via recruiting EZH2 and subsequently increasing H3K27me3 level. Together, our study indicates that CASC15/EZH2/PDCD4 may serve as a promising therapeutic target for melanoma intervention.

SELECTION OF CITATIONS
SEARCH DETAIL
...