Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1108701, 2023.
Article in English | MEDLINE | ID: mdl-36844093

ABSTRACT

Magnolia hypoleuca Sieb. & Zucc, a member of the Magnoliaceae of magnoliids, is one of the most economically valuable, phylogenetic and ornamental tree species in Eastern China. Here, the 1.64 Gb chromosome-level assembly covers 96.64% of the genome which is anchored to 19 chromosomes, with a contig N50 value of 1.71 Mb and 33,873 protein-coding genes was predicted. Phylogenetic analyses between M. hypoleuca and other 10 representative angiosperms suggested that magnoliids were placed as a sister group to the eudicots, rather than sister to monocots or both monocots and eudicots. In addition, the relative timing of the whole-genome duplication (WGD) events about 115.32 Mya for magnoliid plants. M. hypoleuca was found to have a common ancestor with M. officinalis approximately 23.4 MYA, and the climate change of OMT (Oligocene-Miocene transition) is the main reason for the divergence of M. hypoleuca and M. officinalis, which was along with the division of Japanese islands. Moreover, the TPS gene expansion observed in M. hypoleuca might contribute to the enhancement of flower fragrance. Tandem and proximal duplicates of younger age that have been preserved have experienced more rapid sequence divergence and a more clustered distribution on chromosomes contributing to fragrance accumulation, especially phenylpropanoid, monoterpenes and sesquiterpenes and cold tolerance. The stronger selective pressure drived the evolution of tandem and proximal duplicates toward plant self-defense and adaptation. The reference M. hypoleuca genome will provide insights into the evolutionary process of M. hypoleuca and the relationships between the magnoliids with monocots and eudicots, and enable us to delve into the fragrance and cold tolerance produced by M. hypoleuca and provide more robust and deep insight of how the Magnoliales evolved and diversified.

2.
Front Pharmacol ; 13: 1026219, 2022.
Article in English | MEDLINE | ID: mdl-36324672

ABSTRACT

Fuzi, the lateral root of A. carmichaelii Debx., is a typical traditional herbal medicine with both poisonousness and effectiveness, and often used in the treatment of heart failure and other heart diseases. In this review, we searched domestic and foreign literature to sort out the molecular mechanisms of cardiotonic and cardiotoxicity of Fuzi, also including its components. The major bioactive components of Fuzi for cardiotonic are total alkaloids, polysaccharide and the water-soluble alkaloids, with specific mechanisms manifested in the inhibition of myocardial fibrosis, apoptosis and autophagy, and improvement of mitochondrial energy metabolism, which involves RAAS system, PI3K/AKT, JAK/STAT, AMPK/mTOR signaling pathway, etc. Diester-diterpenoid alkaloids in Fuzi can produce cardiotoxic effects by over-activating Na+ and Ca2+ ion channels, over-activating NLRP3/ASC/caspase-3 inflammatory pathway and mitochondria mediated apoptosis pathway. And three clinically used preparations containing Fuzi are also used as representatives to summarize their cardiac-strengthening molecular mechanisms. To sum up, Fuzi has shown valuable cardiotonic effects due to extensive basic and clinical studies, but its cardiotonic mechanisms have not been systematically sorted out. Therefore, it is a need for deeper investigation in the mechanisms of water-soluble alkaloids with low content but obvious therapeutic effect, as well as polysaccharide.

3.
Front Plant Sci ; 13: 1003835, 2022.
Article in English | MEDLINE | ID: mdl-36226278

ABSTRACT

Curcuma longa, known as the 'golden spice' and 'life spice', is one of the most commonly utilized spices in the world and also has medicinal, cosmetic, dye and flavoring values. Herein, we present the chromosomal-level genome for turmeric to explore the differences between tubers and rhizomes in the regulation of curcumin biosynthesis and the mechanism of tuber formation. We assembled the turmeric genome into 21 pseudochromosomes using Pacbio long reads complemented with Hi-C technologies, which has a total length of 1.11 Gb with scaffold N50 of 50.12 Mb and contains 49,612 protein-coding genes. Genomic evolutionary analysis indicated that turmeric and ginger have shared a recent WGD event. Contraction analysis of gene families showed possible roles for transcription factors, phytohormone signaling, and plant-pathogen interactions associated genes in adaptation to harsh environments. Transcriptomic data from tubers at different developmental stages indicated that candidate genes related to phytohormone signaling and carbohydrate metabolic responses may be associated with the induction of tuber formation. The difference in curcumin content between rhizomes and tubers reflected the remodeling of secondary metabolites under environmental stress, which was associated with plant defense in response to abiotic stresses. Overall, the availability of the C. longa genome provides insight into tuber formation and curcumin biosynthesis in turmeric as well as facilitating the understanding of other Curcuma species.

4.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4574-4582, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164862

ABSTRACT

Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3ß(GSK3ß) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.


Subject(s)
Carthamus tinctorius , Chalcone , Flavonoids , Ischemic Stroke , Carthamus tinctorius/chemistry , Chalcone/analogs & derivatives , Chalcone/pharmacology , Chalcone/therapeutic use , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Ischemic Stroke/drug therapy , Janus Kinase 2/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prostaglandin D2 , Proto-Oncogene Proteins c-akt/metabolism , Quinones/pharmacology
5.
J Ethnopharmacol ; 293: 115257, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35395381

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Liquiritin is a flavonoid derived from Radix et Rhizoma Glycyrrhizae, which is a widely used traditional Chinese medicine with the effects of invigorating spleen qi, clearing heat, resolving toxins, and dispelling phlegm to stop coughs. AIM OF THE STUDY: In this review,the pharmacokinetics and pharmacological activities of liquiritin have been summarized. MATERIALS AND METHODS: The information on liquiritin up to 2021 was collected from PubMed, Web of Science, Springer Link, and China National Knowledge Infrastructure databases. The key words were "liquiritin", "nerve", "tumor", "cardiac", etc. RESULTS: The absorption mechanism of liquiritin conforms to the passive diffusion and first-order kinetics while with low bioavailability. Liquiritin can penetrate the blood-brain-barrier. Besides, liquiritin displays numerous pharmacological effects including anti-Alzheimer's disease, antidepressant, antitumor, anti-inflammatory, cardiovascular protection, antitussive, hepatoprotection, and skin protective effects. In addition, the novel preparations, new pharmacological effects,and cdusafty of liquiritin are also discussed in this review. CONCLUSION: This review provides a comprehensive state of knowledge on the pharmacokinetics and pharmacological activities of liquiritin, and makes a forecast for its research directions and applications in clinic.


Subject(s)
Drugs, Chinese Herbal , Flavanones , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Flavanones/pharmacology , Glucosides , Medicine, Chinese Traditional
6.
iScience ; 24(9): 102997, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34505009

ABSTRACT

Magnolia officinalis, a representative tall aromatic tree of the Magnoliaceae family, is a medicinal plant that is widely used in diverse industries from medicine to cosmetics. We report a chromosome-scale draft genome of M. officinalis, in which ∼99.66% of the sequences were anchored onto 19 chromosomes with the scaffold N50 of 76.62 Mb. We found that a high proportion of repetitive sequences was a common feature of three Magnoliaceae with known genomic data. Magnoliids were a sister clade to eudicots-monocots, which provided more support for understanding the phylogenetic position among angiosperms. An ancient duplication event occurred in the genome of M. officinalis and was shared with Lauraceae. Based on RNA-seq analysis, we identified several key enzyme-coding gene families associated with the biosynthesis of lignans in the genome. The construction of the M. officinalis genome sequence will serve as a reference for further studies of Magnolia, as well as other Magnoliaceae.

7.
Article in English | MEDLINE | ID: mdl-34457021

ABSTRACT

Rhein, belonging to anthraquinone compounds, is one of the main active components of rhubarb and Polygonum multiflorum. Rhein has a variety of pharmacological effects, such as cardiocerebral protective effect, hepatoprotective effect, nephroprotective effect, anti-inflammation effect, antitumor effect, antidiabetic effect, and others. The mechanism is interrelated and complex, referring to NF-κB, PI3K/Akt/MAPK, p53, mitochondrial-mediated signaling pathway, oxidative stress signaling pathway, and so on. However, to some extent, its clinical application is limited by its poor water solubility and low bioavailability. Even more, rhein has potential liver and kidney toxicity. Therefore, in this paper, the pharmacological effects of rhein and its mechanism, pharmacokinetics, and safety studies were reviewed, in order to provide reference for the development and application of rhein.

8.
Phytother Res ; 35(8): 4511-4525, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34236105

ABSTRACT

Erianin is a small-molecule compound that is isolated from Dendrobium chrysotoxum Lindl. In recent years, it has been found to have evident antitumor activity in various cancers, such as bladder cancer, cervical cancer, and nasopharyngeal carcinoma. In this study, we assessed the effect of erianin on lung cancer in terms of cell growth inhibition and the related mechanism. First, erianin at a concentration of less than 1 nmol/L exhibited cytotoxicity in H1975, A549, LLC lung cancer cells, did not cause marked growth inhibition in normal lung and kidney cells, induced obvious apoptosis and G2/M phase arrest of cells, and inhibited the migration and invasion of lung cancer cells in vitro. Second, in a mouse xenograft model of lewis lung cancer (LLC), oral administration of erianin (50, 35, and 10 mg kg-1  day-1 for 12 days) substantially inhibited nodule growth, reduced the fluorescence counts of lewis cells and the percentage vascularity of tumor tissues, increased the number of apoptotic tumor cells, the thymus indices, up-regulated the levels of interleukin (IL)-2 and tumor necrosis factor-α (TNF-α), decreased IL-10 levels and the spleen index, and enhanced immune function. Lastly, the possible targets of erianin were determined by molecular docking and verified via western blot assay. The results indicated that erianin may achieve the above effects via inhibiting the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway in vitro and vivo. Taken together, the results showed that erianin had obvious antitumor effects via inhibiting the PI3K/Akt/mTOR pathway in vitro and vivo and may have potential clinical value for the treatment of lung cancer.


Subject(s)
Bibenzyls/pharmacology , Lung Neoplasms , Phenol/pharmacology , Signal Transduction/drug effects , A549 Cells , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Dendrobium , Humans , Lung , Lung Neoplasms/drug therapy , Mice , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases
9.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1633-1640, 2020 Apr.
Article in Chinese | MEDLINE | ID: mdl-32489043

ABSTRACT

According to the major differences of agricultural characters among various Aconitum carmichaelii cultivars, the lateral roots of Ai-leaf and Dahua-leaf A.carmichaelii plants were selected as the research objects. And the Illumina Hiseq high-throughput platform was used for transcriptome sequencing, assembly and annotation. We mostly focused the activity differential transcripts, metabolism pathways and enrichment functions. The results showed that a total of 52.23 Gb nucleotide bases were obtained from 6 A.carmichaelii transcriptome databases, with 52 471 unigenes and 28 765 matched annotation. There were 1 052 transcripts of the two kinds of A.carmichaelii with a difference of more than 2 times, 808 of which were annotated. Through GO and COG analysis, they were found to mainly concentrate in metabolic processes, cell processes, catalytic processes and transport processes, connections and other functions. KEGG analysis showed that 262 DEGs were enriched in 78 metabolic pathways, such as starch and sucrose metabolism, plant hormone signaling, carbon compounded transport etc. It was implied that many genes in Dahua-leaf A.carmichaelii regulated the conversion of starch to small molecules such as sucrose, glucose and maltose, while some other genes regulated the accumulation of amino acids, which may be the important biological principles for the formation of the differences between the quality and disease resistance of two leaf types of A.carmichaelii. This study will provide reference datas for A.carmichaelii breeding research.


Subject(s)
Aconitum , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation
10.
Phytochemistry ; 146: 56-62, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29247892

ABSTRACT

Vitex rotundifolia is the variant of the traditional Chinese medicine (TCM) Vitex trifolia. Diterpenoids from V. trifolia have shown anti-hyperlipidemia activity. As part of a continuous research program of searching for anti-hyperlipidemia constituents from TCM, 95% alcohol extract of the fruits of V. rotundifolia was fully studied, and 18 diterpenoids were isolated, including eight previously undescribed compounds (viterofolins A-H). Among them, viterofolins A-B were previously undescribed rearranged halimane-type diterpenoids, viterofolins CH were previously undescribed halimane-type diterpenoids. These compounds were then firstly evaluated in lipid (Dil-LDL) uptake assay in HepG2 cells. Viterofolin H, (5S, 6R, 8R, 9R, 10S)-6-acetoxy-9-hydroxy-13 (14)-labden-16,15-olide and previtexilactone showed moderate activities in promoting LDL uptake (1.27-1.35 fold). This work laid the foundation for searching anti-hyperlipidemia natural products.


Subject(s)
Biological Products/pharmacology , Diterpenes/pharmacology , Hyperlipidemias/drug therapy , Hypolipidemic Agents/pharmacology , Lipoproteins, LDL/metabolism , Vitex/chemistry , Biological Products/chemistry , Biological Products/isolation & purification , Diterpenes/chemistry , Diterpenes/isolation & purification , Hep G2 Cells , Humans , Hyperlipidemias/metabolism , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/isolation & purification , Medicine, Chinese Traditional , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...