Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 21(26): 32655-67, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24514859

ABSTRACT

This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (>90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 × 8 prototype fabricated using foundry services provided by OpSIS-IME.

2.
Opt Express ; 20(24): 26958-68, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23187551

ABSTRACT

This paper demonstrates a rapid and full hitless defragmentation method in elastic optical networks exploiting a new technique for fast wavelength tracking in coherent receivers. This technique can be applied to a single-carrier connection or each of the subcarriers forming a super-channel. A proof-of-concept demonstration shows hitless defragmentation of a 10 Gb/s QPSK single-carrier connection from 1547.75 nm to 1550.1 nm in less than 1 µs. This was obtained using a small (0.625 kB) link-layer transmitter buffer without the need for any additional transponder. We also demonstrated that the proposed defragmentation technique is capable of hopping over an existing connection, i.e. 10 Gb/s OOK at 1548.5 nm, without causing any degradation of its real-time Bit Error Rate (BER) value. The proposed scheme gives advantages in terms of overall network blocking probability reduction up to a factor of 40.


Subject(s)
Algorithms , Fiber Optic Technology/instrumentation , Optical Fibers , Signal Processing, Computer-Assisted , Telecommunications/instrumentation , Equipment Design , Humans , Medical Informatics
3.
Opt Express ; 20(2): 1798-804, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22274524

ABSTRACT

While flexible bandwidth elastic optical networking is a promising direction for future networks, the spectral fragmentation problem in such a network inevitably raises the blocking probability and significantly degrades network performance. This paper addresses the spectral defragmentation problem using an auxiliary graph based approach, which transforms the problem into a matter of finding the maximum independent set (MIS) in the constructed auxiliary graph. The enabling technologies and defragmentation-capable node architectures, together with heuristic defragmentation algorithms are proposed and evaluated. Simulation results show that the proposed min-cost defragmentation algorithms can significantly reduce the blocking probability of incoming requests in a spectrally fragmented flexible bandwidth optical network, while substantially minimizing the number of disrupted connections.


Subject(s)
Algorithms , Fiber Optic Technology/instrumentation , Fiber Optic Technology/methods , Optical Fibers , Telecommunications/instrumentation , Medical Informatics
4.
Opt Express ; 19(26): B736-45, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22274096

ABSTRACT

We demonstrate a flexible-bandwidth network testbed with a real-time, adaptive control plane that adjusts modulation format and spectrum-positioning to maintain quality of service (QoS) and high spectral efficiency. Here, low-speed supervisory channels and field-programmable gate arrays (FPGAs) enabled real-time impairment detection of high-speed flexible bandwidth channels (flexpaths). Using premeasured correlation data between the supervisory channel quality of transmission (QoT) and flexpath QoT, the control plane adapted flexpath spectral efficiency and spectral location based on link quality. Experimental demonstrations show a back-to-back link with a 360-Gb/s flexpath in which the control plane adapts to varying link optical signal to noise ratio (OSNR) by adjusting the flexpath's spectral efficiency (i.e., changing the flexpath modulation format) between binary phase-shift keying (BPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK). This enables maintaining the data rate while using only the minimum necessary bandwidth and extending the OSNR range over which the bit error rate in the flexpath meets the quality of service (QoS) requirement (e.g. the forward error correction (FEC) limit). Further experimental demonstrations with two flexpaths show a control plane adapting to changes in OSNR on one link by changing the modulation format of the affected flexpath (220 Gb/s), and adjusting the spectral location of the other flexpath (120 Gb/s) to maintain a defragmented spectrum.

SELECTION OF CITATIONS
SEARCH DETAIL
...