Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3953, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368432

ABSTRACT

A two-dimensional tube bundles fluid-structure coupling model was developed using the CFD approach, with a rigid body motion equation and the Newmark integral method. The numerical simulations were performed to determine the vibration coupling properties between various tube bundles of stiffness. Take the corner square tube bundles with a pitch ratio of 1.28 as the research object. The influence of adjacent tubes with different stiffness on the vibration of the central target tube was analyzed. The research results show that the vibration characteristic of tube bundles is affected by the flow field dominant frequency and the inherent frequency of tube bundles. The vibration of adjacent tube bundles significantly impacts the amplitude and frequency of the central target tube. The equal stiffness and large stiffness tubes upstream or downstream inhibit the vibration displacement of the target tube to some extent. The low-stiffness tubes upstream or downstream significantly enhanced the amplitude of the target tube. The findings can be used to provide a basis for reasonable design and vibration suppression of shell-and-tube heat exchangers.

2.
Article in English | MEDLINE | ID: mdl-37478041

ABSTRACT

Sensors are the key to environmental monitoring, which impart benefits to smart cities in many aspects, such as providing real-time air quality information to assist human decision-making. However, it is impractical to deploy massive sensors due to the expensive costs, resulting in sparse data collection. Therefore, how to get fine-grained data measurement has long been a pressing issue. In this article, we aim to infer values at nonsensor locations based on observations from available sensors (termed spatiotemporal inference), where capturing spatiotemporal relationships among the data plays a critical role. Our investigations reveal two significant insights that have not been explored by previous works. First, data exhibit distinct patterns at both long-and short-term temporal scales, which should be analyzed separately. Second, short-term patterns contain more delicate relations, including those across spatial and temporal dimensions simultaneously, while long-term patterns involve high-level temporal trends. Based on these observations, we propose to decouple the modeling of short-and long-term patterns. Specifically, we introduce a joint spatiotemporal graph attention network to learn the relations across space and time for short-term patterns. Furthermore, we propose a graph recurrent network with a time skip strategy to alleviate the gradient vanishing problem and model the long-term dependencies. Experimental results on four public real-world datasets demonstrate that our method effectively captures both long-and short-term relations, achieving state-of-the-art performance against existing methods.

SELECTION OF CITATIONS
SEARCH DETAIL