Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 170: 441-452, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38039682

ABSTRACT

Medical image segmentation is fundamental for modern healthcare systems, especially for reducing the risk of surgery and treatment planning. Transanal total mesorectal excision (TaTME) has emerged as a recent focal point in laparoscopic research, representing a pivotal modality in the therapeutic arsenal for the treatment of colon & rectum cancers. Real-time instance segmentation of surgical imagery during TaTME procedures can serve as an invaluable tool in assisting surgeons, ultimately reducing surgical risks. The dynamic variations in size and shape of anatomical structures within intraoperative images pose a formidable challenge, rendering the precise instance segmentation of TaTME images a task of considerable complexity. Deep learning has exhibited its efficacy in Medical image segmentation. However, existing models have encountered challenges in concurrently achieving a satisfactory level of accuracy while maintaining manageable computational complexity in the context of TaTME data. To address this conundrum, we propose a lightweight dynamic convolution Network (LDCNet) that has the same superior segmentation performance as the state-of-the-art (SOTA) medical image segmentation network while running at the speed of the lightweight convolutional neural network. Experimental results demonstrate the promising performance of LDCNet, which consistently exceeds previous SOTA approaches. Codes are available at github.com/yinyiyang416/LDCNet.


Subject(s)
Colorectal Neoplasms , Laparoscopy , Humans , Rectum/surgery , Laparoscopy/methods , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
2.
Front Mol Biosci ; 10: 1227371, 2023.
Article in English | MEDLINE | ID: mdl-37441162

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects elderly individuals. Recent studies have found that sigma-1 receptor (S1R) agonists can maintain endoplasmic reticulum stress homeostasis, reduce neuronal apoptosis, and enhance mitochondrial function and autophagy, making S1R a target for AD therapy. Traditional experimental methods are costly and inefficient, and rapid and accurate prediction methods need to be developed, while drug repurposing provides new ways and options for AD treatment. In this paper, we propose HNNDTA, a hybrid neural network for drug-target affinity (DTA) prediction, to facilitate drug repurposing for AD treatment. The study combines protein-protein interaction (PPI) network analysis, the HNNDTA model, and molecular docking to identify potential leads for AD. The HNNDTA model was constructed using 13 drug encoding networks and 9 target encoding networks with 2506 FDA-approved drugs as the candidate drug library for S1R and related proteins. Seven potential drugs were identified using network pharmacology and DTA prediction results of the HNNDTA model. Molecular docking simulations were further performed using the AutoDock Vina tool to screen haloperidol and bromperidol as lead compounds for AD treatment. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) evaluation results indicated that both compounds had good pharmacokinetic properties and were virtually non-toxic. The study proposes a new approach to computer-aided drug design that is faster and more economical, and can improve hit rates for new drug compounds. The results of this study provide new lead compounds for AD treatment, which may be effective due to their multi-target action. HNNDTA is freely available at https://github.com/lizhj39/HNNDTA.

SELECTION OF CITATIONS
SEARCH DETAIL
...