Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 18(37): 25837-25851, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27711781

ABSTRACT

The characterization of plasma and atomic radical parameters along with the energy influx from plasma to the substrate during plasma enhanced chemical vapor deposition (PECVD) of Si quantum dot (QD) films is presented and discussed. In particular, relating to the Si QD process optimization and control of film growth, the necessity to control the deposition environment by inducing the effect of the energy of the key plasma species is realized. In this contribution, we report dual frequency PECVD processes for the low-temperature and high-rate deposition of Si QDs by chemistry and energy control of the key plasma species. The dual frequency plasmas can effectively produce a very high plasma density and atomic H and N densities, which are found to be crucial for the growth and nucleation of QDs. Apart from the study of plasma chemistry, the crucial role of the energy imparted due to these plasma activated species on the substrate is determined in light of QD formation. Various plasma diagnostics and film analysis methods are integrated to correlate the effect of plasma and energy flux on the properties of the deposited films prepared in the reactive mixtures of SiH4/NH3 at various pressures. The present results are highly relevant to the development of the next-generation plasma process for devices that rely on effective control of the QD size and film properties.

2.
Phys Chem Chem Phys ; 18(23): 15697-710, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27226277

ABSTRACT

The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

3.
Am J Physiol Heart Circ Physiol ; 292(6): H2664-70, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17277015

ABSTRACT

The present study aims to experimentally elucidate subtle structural features of the rat valve leaflet and the related nature of macromolecular transport across its endothelium and in its subendothelial space, information necessary to construct a rational theoretical model that can explain observation. After intravenous injection of horseradish peroxidase (HRP), we perfusion-fixed the aortic valve of normal Sprague-Dawley rats and found under light microscopy that HRP leaked through the leaflet's endothelium at very few localized brown spots, rather than uniformly. These spots grew nearly as rapidly with HRP circulation time before euthanasia as aortic spots, particularly when the time axis only included the time the valve was closed. These results suggest that macromolecular transport in heart valves depends not only on the direction normal to, but also parallel to, the endothelial surface and that convection, as well as molecular diffusion, plays an important role in macromolecular transport in heart valves. Transmission electron microscopy of traverse leaflet sections after 4-min HRP circulation showed a very thin ( approximately 150 nm), sparse layer immediately beneath the endothelium where the HRP concentration was much higher than that in the matrix below it. Nievelstein-Post et al.'s (Nievelstein-Post P, Mottino G, Fogelman A, Frank J. Arterioscler Thromb 14: 1151-1161, 1994) ultrarapid freezing/rotary shadow etching of the normal rabbit valve's subendothelial space supports the existence of this very thin, very sparse "valvular subendothelial intima," in analogy to the vascular subendothelial intima.


Subject(s)
Aortic Valve/metabolism , Endothelium, Vascular/metabolism , Macromolecular Substances/metabolism , Animals , Aortic Valve/ultrastructure , Biological Transport , Body Water/metabolism , Capillary Permeability , Diffusion , Endothelium, Vascular/ultrastructure , Horseradish Peroxidase , Kinetics , Male , Microscopy, Electron, Transmission , Rats , Rats, Sprague-Dawley
4.
Am J Physiol Heart Circ Physiol ; 292(6): H2687-97, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17237250

ABSTRACT

The heart valve leaflets of 29-day cholesterol-fed rabbits were examined by ultrarapid freezing without conventional chemical fixation/processing, followed by rotary shadow freeze-etching. This procedure images the leaflets' subendothelial extracellular matrix in extraordinary detail, and extracellular lipid liposomes, from 23 to 220 nm in diameter, clearly appear there. These liposomes are linked to matrix filaments and appear in clusters. Their size distribution shows 60.7% with diameters 23-69 nm, 31.7% between 70 and 119 nm, 7.3% between 120 and 169 nm, and 0.3% between 170 and 220 nm (superlarge) and suggests that smaller liposomes can fuse into larger ones. We couple our model from Part II of this series (Zeng Z, Yin Y, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 292: H2671-H2686, 2007) for lipid transport into the leaflet to the nucleation-polymerization model hierarchy for liposome formation proposed originally for aortic liposomes to predict liposome formation/growth in heart valves. Simulations show that the simplest such model cannot account for the observed size distribution. However, modifying this model by including liposome fusing/merging, using parameters determined from aortic liposomes, leads to predicted size distributions in excellent agreement with our valve data. Evolutions of both the liposome size distribution and total liposome mass suggest that fusing becomes significant only after 2 wk of high lumen cholesterol. Inclusion of phagocytosis by macrophages limits the otherwise monotonically increasing total liposome mass, while keeping the excellent fit of the liposome size distribution to the data.


Subject(s)
Aortic Valve/metabolism , Endothelial Cells/metabolism , Heart Valve Diseases/etiology , Hyperlipidemias/metabolism , Lipid Metabolism , Mitral Valve/metabolism , Models, Cardiovascular , Animals , Aortic Valve/ultrastructure , Biological Transport , Computer Simulation , Dietary Fats , Disease Models, Animal , Endothelial Cells/ultrastructure , Extracellular Matrix/metabolism , Heart Valve Diseases/metabolism , Heart Valve Diseases/pathology , Hyperlipidemias/chemically induced , Hyperlipidemias/complications , Hyperlipidemias/pathology , Kinetics , Liposomes/metabolism , Macromolecular Substances/metabolism , Macrophages/metabolism , Microscopy, Electron , Mitral Valve/ultrastructure , Particle Size , Phagocytosis , Rabbits
5.
Am J Physiol Heart Circ Physiol ; 292(6): H2671-86, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17220189

ABSTRACT

This paper proposes a new, two-dimensional convection-diffusion model for macromolecular transport in heart valves based on horseradish peroxidase (HRP) experiments on rats presented in the first of the papers in this series (Part I; Zeng Z, Yin Y, Huang AL, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 292: H2664-H2670, 2007). Experiments require two valvular intimae, one underneath each endothelium. Tompkins et al. (Tompkins RG, Schnitzer JJ, Yarmush ML. Circ Res 64: 1213-1223, 1989) found large variations in shape and magnitude in transvalvular (125)I-labeled low-density lipoprotein (LDL) profiles from identical experiments on four squirrel monkeys. Their one-dimensional, uniform-medium diffusion-only model fit three parameters independently for each profile; data variability resulted in large parameter spreads. Our theory aims to explain their data with one parameter set. It uses measured parameters and some aortic values but fits the endothelial mass transfer coefficient (k(a)=k(v)=1.63 x 10(-8) cm/s, where subscripts a and v indicate aortic aspect and ventricular aspect, respectively) and middle layer permeability (K(p(2))=2.28 x 10(-16)cm(2)) and LDL diffusion coefficient [D(2)(LDL)=5.93 x 10(-9) cm(2)/s], using one of Tompkins et al.'s profiles, and fixes them throughout. It accurately predicts Part I's rapid localized HRP leakage spot growth rate in rat leaflets that results from the intima's much sparser structure, dictating its far larger transport parameters [K(p(1))= 1.10 x 10(-12)cm(2), D(1)(LDL/HRP)=1.02/4.09 x 10(-7)cm(2)/s] than the middle layer. This contrasts with large arteries with similarly large HRP spots, since the valve has no internal elastic lamina. The model quantitatively explains all of Tompkins et al.'s monkey profiles with these same parameters. Different numbers and locations of isolated macromolecular leaks on both aspects and different section-leak(s) distances yield all profiles.


Subject(s)
Aortic Valve/metabolism , Coronary Circulation , Endothelium, Vascular/metabolism , Macromolecular Substances/metabolism , Models, Cardiovascular , Animals , Biological Transport , Blood Flow Velocity , Blood Pressure , Body Water/metabolism , Capillary Permeability , Diffusion , Horseradish Peroxidase , Kinetics , Lipoproteins, LDL/metabolism , Male , Pulsatile Flow , Rats , Rats, Sprague-Dawley , Saimiri
SELECTION OF CITATIONS
SEARCH DETAIL
...