Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 10: 546, 2019.
Article in English | MEDLINE | ID: mdl-31244886

ABSTRACT

Staphylococcus aureus is the most commonly identified airway colonizer of cystic fibrosis (CF) patients, and infections with methicillin-resistant S. aureus (MRSA) are associated with poor outcomes. Yet, little is known about the intrahost evolution of S. aureus among CF patients. We investigated convergent evolution and adaptation of MRSA among four CF patients with long-term respiratory carriage. For each patient, we performed whole-genome sequencing on an average of 21 isolates (range: 19-23) carried for a mean of 1,403 days (range: 903-1,679), including 25 pairs of isolates collected on the same day. We assessed intrahost diversity, population structure, evolutionary history, evidence of switched intergenic regions (IGRs), and signatures of adaptation in the context of patient age, antibiotic treatment, and co-colonizing microbes. Phylogenetic analysis delineated distinct multilocus sequence type ST5 (n = 3) and ST72 (n = 1) clonal populations in addition to sporadic, non-clonal isolates, and uncovered a putative transmission event. Variation in antibiotic resistance was observed within clonal populations, even among isolates collected on the same day. Rates of molecular evolution ranged from 2.21 to 8.64 nucleotide polymorphisms per year, and lineage ages were consistent with acquisition of colonization in early childhood followed by subsequent persistence of multiple sub-populations. Selection analysis of 1,622 core genes present in all four clonal populations (n = 79) found 11 genes variable in three subjects - most notably, ATP-dependent protease clpX, 2-oxoglutarate dehydrogenase odhA, fmtC, and transcription-repair coupling factor mfd. Only one gene, staphylococcal protein A (spa), was found to have evidence of gene-wide diversifying selection. We identified three instances of intrahost IGR switching events, two of which flanked genes related to quorum sensing. The complex microbial ecology of the CF airway poses challenges for management. We illustrate appreciable intrahost diversity as well as persistence of a dominant lineage. We also show that intrahost adaptation is a continual process, despite purifying selective pressure, and provide targets that should be investigated further for their function in CF adaptation.

2.
BMC Microbiol ; 18(1): 206, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30518317

ABSTRACT

BACKGROUND: USA300 methicillin-resistant Staphylococcus aureus (MRSA) is a community- and hospital-acquired pathogen that frequently causes infections but also can survive on the human body asymptomatically as a part of the normal microbiota. We devised a comparative genomic strategy to track colonizing USA300 at different body sites after an initial infection. We sampled ST8 S. aureus from subjects at the site of a first known MRSA infection. Within 60 days of this infection and again 12 months later, each subject was tested for asymptomatic colonization in the nose, throat and perirectal region. 93 S. aureus strains underwent whole genome shotgun sequencing. RESULTS: Among 28 subjects at the initial sampling time, we isolated S. aureus from the nose, throat and perirectal sites from 15, 11 and 15 of them, respectively. Twelve months later we isolated S. aureus from 9 subjects, with 6, 3 and 3 strains from the nose, throat and perirectal area, respectively. Genome sequencing revealed that 23 patients (ages 0-66 years) carried USA300 intra-subject lineages (ISLs), defined as having an index infection isolate and closely related colonizing strains. Pairwise distance between strains in different ISLs was 48 to 162 single nucleotide polymorphisms (SNPs) across the core regions of the chromosome, whereas within the same ISL it was 0 to 26 SNPs. Strains in ISLs from the same subject differed in plasmid and prophage content, and contained deletions that removed the mecA-containing SCCmec and ACME regions. Five strains contained frameshift mutations in agr toxin-regulating genes. Persistence of an ISL was not associated with clinical or demographic subject characteristics. We inferred that colonization with the ISL occurred about 18 weeks before the first assessment of asymptomatic colonization. CONCLUSIONS: Clonal lineages of USA300 may continue to colonize people at one or more anatomic sites up to a year after an initial infection and experience loss of the SCCmec, loss and gain of other mobile genetic elements, and mutations in the agr operon.


Subject(s)
Carrier State/microbiology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/microbiology , Adolescent , Adult , Aged , Anti-Bacterial Agents/pharmacology , Child , Child, Preschool , Drug Resistance, Bacterial , Female , Genome, Bacterial , Genotype , Humans , Infant , Male , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Middle Aged , Phylogeny , Plasmids/genetics , Plasmids/metabolism , Young Adult
3.
J Infect Dis ; 214(6): 895-905, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27288537

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) USA300 is the leading cause of MRSA infections in the United States and has caused an epidemic of skin and soft-tissue infections. Recurrent infections with USA300 MRSA are common, yet intrahost evolution during persistence on an individual has not been studied. This gap hinders the ability to clinically manage recurrent infections and reconstruct transmission networks. METHODS: To characterize bacterial intrahost evolution, we examined the clinical courses of 4 subjects with 3-6 recurrent USA300 MRSA infections, using patient clinical data, including antibiotic exposure history, and whole-genome sequencing and phylogenetic analysis of all available MRSA isolates (n = 29). RESULTS: Among sequential isolates, we found variability in diversity, accumulation of mutations, and mobile genetic elements. Selection for antimicrobial-resistant populations was observed through both an increase in the number of plasmids conferring multidrug resistance and strain replacement by a resistant population. Two of 4 subjects had strain replacement with a genetically distinct USA300 MRSA population. DISCUSSIONS: During a 5-year period in 4 subjects, we identified development of antimicrobial resistance, intrahost evolution, and strain replacement among isolates from patients with recurrent MRSA infections. This calls into question the efficacy of decolonization to prevent recurrent infections and highlights the adaptive potential of USA300 and the need for effective sampling.


Subject(s)
Evolution, Molecular , Genotype , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Soft Tissue Infections/microbiology , Staphylococcal Skin Infections/microbiology , Adult , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Female , Genetic Variation , Genome, Bacterial , Humans , Infant , Male , Methicillin-Resistant Staphylococcus aureus/genetics , Middle Aged , Phylogeny , Plasmids/analysis , Prospective Studies , Recurrence , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...