Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 626: 208-220, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35797867

ABSTRACT

It is of great importance to fabricate flexible polyurethane foam (FPUF) with superior mechanical properties and flame retardancy for practical applications. Herein, organosilicon and phenyl phosphorus compounds were synthesized and grafted on the surface of Ti3C2Tx (Ti3C2Tx@BPA@PCL) via in-situ polymerization. Then, the FPUF composites were fabricated, combining intrinsic flame retardancy (9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-diethanolamine: DH-DOPO) (addition amount: 20 wt%) and Ti3C2Tx@BPA@PCL (addition amount: 4 wt%). Attributed to the rigid structure of Ti3C2Tx@BPA@PCL, the tensile strength and compression strength of FPUF showed 24.0% and 253% increase, respectively. In addition, anti-fatigue properties of FPUF composites during the cyclical test were dramatically enhanced. In contrast to pure FPUF, 36.1% and 44.0% reductions in peak heat release rate (pHRR) and total heat release (THR) were achieved for the FPUF containing Ti3C2Tx@BPA@PCL and DH-DOPO, the production rate of carbon dioxide (CO2) and carbon oxide (CO) also decreased by 40.3% and 52.1%, respectively. FPUF4 showed self-extinguishing behavior, and passed the vertical burning test (VBT). This work provides a facile approach to preparing high-performance FPUF with enhanced mechanical property and flame retardancy.


Subject(s)
Flame Retardants , Oxides , Polyurethanes , Titanium
2.
J Colloid Interface Sci ; 608(Pt 2): 1652-1661, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34742080

ABSTRACT

Polyolefin (PO) cables used in confined spaces need to have low smoke, low heat release, low toxic gas release and excellent physical properties. In this work, a series of rare earth stannates Re2Sn2O7 (RES, Re = Nd, Sm, Gd) with high temperature catalytic performance were prepared by hydrothermal method for synergistic flame retardant PO/IFR. The flame retardancy, heat release, smoke density, toxic gas release and physical properties of PO composites were thoroughly studied in detail. The RES could enhance the vertical burning rating and the limiting oxygen index (LOI) of PO/IFR composites. Moreover, the residual char of the thermogravimetric analysis increased from 9.7% to 11.4 wt% after the RES added in PO/IFR system. Interestingly, the PO/IFR system containing Gd2Sn2O7 exhibits the lowest peak heat release rate of 233.7 kW/m2. Excellent flame resistance due to the formation of a complete and compact protective char layer. In addition, the toxic release of PO during combustion is also effectively reduced by introducing the RES. The tube furnace combustion test shows that the emission of carbon oxide (CO) and hydrogen cyanide (HCN) of PO/IFR/Gd2Sn2O7 are the lowest. It can be attributed to the catalytic effect of rare earth elements and the blocking effect of the dense char layer. In addition, compared with the PO/IFR composites, the PO/IFR/RES system demonstrate higher mechanical properties and volume resistivity. Therefore, the addition of RES has a positive effect on improving the physical properties and fire safety properties of the PO/IFR cable composites, especially suitable for using in confined spaces.


Subject(s)
Flame Retardants , Physical Functional Performance , Polyenes
3.
J Colloid Interface Sci ; 606(Pt 2): 1205-1218, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34492459

ABSTRACT

Flexible polyurethane foam (FPUF) is the most commonly used polyurethane, but its highly flammable characteristics makes it ignite easily and release a lot of heat and toxic gases. Here, the effect of different forms of copper salt modified graphene (rGO@CuO, rGO@Cu2O and rGO@CSOH) on improving the fire protection efficiency and mechanical property of FPUF is explored. Hybrid FPUF is characterized by thermogravimetric analysis (TGA), cone calorimeter, thermogravimetric analysis/Fourier transform infrared spectroscopy (TG-IR), tension, compression, and falling ball rebound testing. Compared with pure FPUF, the FPUF/rGO@CSOH show a significant decreasement in reducing the heat release of FPUF, the PHRR and THR are reduced by 36.9% and 29.4%, respectively. While the FPUF/rGO@Cu2O demonstrate excellent smoke and toxic gases suppression in FPUF, the PSPR and TSR are reduced by 24.6% and 51.9%, and the COP and COY are also reduced by 51.9% and 55.3%, respectively. After adding the copper salt hybrid, the buffering performance of FPUF did not change. Fortunately, the tensile and compressive strength increase obviously. The flame retardant and smoke suppression mechanism of hybrid FPUF has also been studied. This article gives a effective strategy for the preparation of FPUF with outstanding mechanical property, flame retardant and smoke suppression properties.


Subject(s)
Flame Retardants , Graphite , Copper , Polyurethanes
4.
J Colloid Interface Sci ; 607(Pt 2): 1300-1312, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34583035

ABSTRACT

Flexible polyurethane foam (FPUF) is the most used polyurethane, but the highly flammable characteristic limits its widespread usage. In this work, ZIF-8@Ti3C2Txwas synthesized to reduce the heat and toxic gases of FPUF. Flame-retardant FPUF was characterized by cone calorimeter (Cone), thermogravimetric analysis/fourier-transform infrared spectroscopy (TG-FTIR), tensileand compression tests. Compared with pure FPUF, these results showed that the peak of heat release rate (PHRR), total heat release (THR), CO and HCN of FPUF6 decreased by 46%, 69%, 27% and 43.5%, respectively. Moreover, the tensile and compression strength of FPUF6 demonstrated a 52% and 130% increment, respectively. The superior dual metal catalytical charring-forming effect and physical barrier effect of ZIF-8@Ti3C2Tx were achieved. In summary, a simple and reliable strategy for preparing flame-retardant FPUF with reinforced mechanical and fire safety properties was provided.


Subject(s)
Flame Retardants , Polyurethanes , Gases , Polyurethanes/toxicity , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...