Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37376388

ABSTRACT

The global shortage of freshwater supply has become an imminent problem. The high energy consumption of traditional desalination technology cannot meet the demand for sustainable energy development. Therefore, exploring new energy sources to obtain pure water has become one of the effective ways to solve the freshwater resource crisis. In recent years, solar steam technology which utilizes solar energy as the sole input source for photothermal conversion has shown to be sustainable, low-cost, and environmentally friendly, providing a viable low-carbon solution for freshwater supply. This review summarizes the latest developments in solar steam generators. The working principle of steam technology and the types of heating systems are described. The photothermal conversion mechanisms of different materials are illustrated. Emphasis is placed on describing strategies to optimize light absorption and improve steam efficiency from material properties to structural design. Finally, challenges in the development of solar steam devices are pointed out, aiming to provide new ideas for the development of solar steam devices and alleviate the shortage of freshwater resources.

2.
Front Chem ; 10: 920430, 2022.
Article in English | MEDLINE | ID: mdl-35685347

ABSTRACT

With the rapid evolution of wearable electronics, the demand for flexible energy storage devices is gradually increasing. At present, the commonly used energy storage devices in life are based on rigid frames, which may lead to failure or explosion when mechanical deformation occurs. The main reason for this phenomenon is the insufficient elastic limit of the metal foil current collector with a simple plane structure inside the electrodes. Obviously, the design and introduction of innovative structural materials in current collectors is the key point to solving this problem. Several recent studies have shown that metal nanowires can be used as novel current collector materials to fabricate flexible energy storage devices. Herein, we review the applications of metal nanowires in the field of flexible energy storage devices by selecting the three most representative metals (Au, Ag, and Cu). By the analysis of the various typical literature, the advantages and disadvantages of these three metal nanowires (Au, Ag, and Cu) are discussed respectively. Finally, we look forward to the development direction of one-dimensional (1D) metal nanowires in flexible energy storage devices and show the personal opinions with a reference value, hoping to provide the experience and ideas for related research in the future.

3.
Small ; 17(45): e2103448, 2021 11.
Article in English | MEDLINE | ID: mdl-34611985

ABSTRACT

Water-infiltration-induced power generation has the renewable characteristic of generating electrical energy from ambient water. Importantly, it is found that the carrier concentration in semiconductor constituting the energy generator seriously affect the electricity generation. Nevertheless, few studies are conducted on the influence of semiconductor carrier concentration, a crucial factor on electricity generation. Due to this, understanding of the energy harvesting mechanism is still insufficient. Herein, the semiconductor carrier concentration-dependent behavior in water-infiltration-induced electricity generation and the energy harvesting mechanism by ionovoltaic effect are comprehensively verified. A clue to enhance the electric power generation efficiency is also proposed. When 20 µL of water (NaCl, 0.1 m) infiltrates into a porous CuO nanowires film (PCNF), electric power of ≈0.5 V and ≈1 µA are produced for 25 min. Moreover, the PCNF shows good practicability by generating electricity using various ambient water, turning on LEDs, and being fabricated as a curved one.


Subject(s)
Electricity , Water , Semiconductors
4.
J Environ Manage ; 274: 111145, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32801108

ABSTRACT

This study investigates the use of electrically conductive granules as packing material in biotrickling filter (BTF) systems as to provide insights on the specific microbial abundance and functions during the treatment of xylene-containing waste gas. In addition, the effect of applied potential on attached biofilm on conductive granules during xylene degradation was briefly investigated. During stable operation period, the conductive granules packed BTF achieved reactor performance of no less than 80% with a maximum EC of 137.7 g/m3 h. Under applied potential of 1V, the BTF system showed deterioration of xylene removal by ranging from 21 to 76%, which also affected the distribution and relative abundance of the major microorganisms such as Xanthobacter, Acidovorax, Rhodococcus, Hydrogenophaga, Arthrobacter, Brevundimonas, Pseudoxanthomonas, Devosia, Shinella, Sphingobium, Dokdonella, Pseudomonas and Bosea. The acclimation of applied potential led to the enrichment of autotrophic bacteria and strains, which are correlated to improved nitrogen cycling. In general, applying electrical potential is feasible to shape the microbiological structure of biofilms to selectively adjust their biochemical functions.


Subject(s)
Microbiota , Xylenes , Biodegradation, Environmental , Bioreactors , Filtration
5.
J Agric Food Chem ; 67(31): 8493-8499, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31310523

ABSTRACT

The ginsenosides Rh2 and Rg3 induce tumor cell apoptosis, inhibit tumor cell proliferation, and restrain tumor invasion and metastasis. Despite Rh2 and Rg3 having versatile pharmacological activities, contents of them in natural ginseng are extremely low. To produce ginsenosides Rh2 and Rg3, the saponin-producing capacity of endophytic bacteria isolated from Panax ginseng was investigated. In this work, 81 endophytic bacteria isolates were taken from ginseng roots by tissue separation methods. Among them, strain PDA-2 showed the highest capacity to produce the rare ginsenosides; the concentrations of rare ginsenosides Rg3 and Rh2 reached 62.20 and 18.60 mg/L, respectively. On the basis of phylogenetic analysis, it was found that strain PDA-2 belongs to the genus Agrobacterium and was very close to Agrobacterium rhizogenes.


Subject(s)
Bacteria/metabolism , Endophytes/metabolism , Ginsenosides/biosynthesis , Panax/microbiology , Agrobacterium/classification , Agrobacterium/genetics , Agrobacterium/isolation & purification , Agrobacterium/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Phylogeny , Plant Roots/microbiology
6.
ACS Nano ; 12(5): 4894-4902, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29709175

ABSTRACT

In this study, we developed a roll-to-roll Ag electroplating process for metallic nanowire electrodes using a galvanostatic mode. Electroplating is a low-cost and facile method for deposition of metal onto a target surface with precise control of both the composition and the thickness. Metallic nanowire networks [silver nanowires (AgNWs) and copper nanowires (CuNWs)] coated onto a polyethylene terephthalate (PET) film were immersed directly in an electroplating bath containing AgNO3. Solvated silver ions (Ag+ ions) were deposited onto the nanowire surface through application of a constant current via an external circuit between the nanowire networks (cathode) and a Ag plate (anode). The amount of electroplated Ag was systematically controlled by changing both the applied current density and the electroplating time, which enabled precise control of the sheet resistance and optical transmittance of the metallic nanowire networks. The optimized Ag-electroplated AgNW (Ag-AgNW) films exhibited a sheet resistance of ∼19 Ω/sq at an optical transmittance of 90% (550 nm). A transmission electron microscopy study confirmed that Ag grew epitaxially on the AgNW surface, but a polycrystalline Ag structure was formed on the CuNW surface. The Ag-electroplated metallic nanowire electrodes were successfully applied to various electronic devices such as organic light-emitting diodes, triboelectric nanogenerators, and a resistive touch panel. The proposed roll-to-roll Ag electroplating process provides a simple, low-cost, and scalable method for the fabrication of enhanced transparent conductive electrode materials for next-generation electronic devices.

7.
Chemistry ; 23(48): 11629-11635, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28653431

ABSTRACT

A novel copper oxide/graphite composite (GCuO) anode with high capacity and long cycle stability is proposed. A simple, one-step synthesis method is used to prepare the GCuO, through heat treatment of the Cu ion complex and pristine graphite. The gases generated during thermal decomposition of the Cu ion complex (H2 and CO2 ) induce interlayer expansion of the graphite planes, which assists effective ion intercalation. Copper oxide is formed simultaneously as a high-capacity anode material through thermal reduction of the Cu ion complex. Material analyses reveal the formation of Cu oxide nanoparticles and the expansion of the gaps between the graphite layers from 0.34 to 0.40 nm, which is enough to alleviate layer stress for reversible ion intercalation for Li or Na batteries. The GCuO cell exhibits excellent Li-ion battery half-cell performance, with a capacity of 532 mAh g-1 at 0.2 C (C-rate) and capacity retention of 83 % after 250 cycles. Moreover, the LiFePO4 /GCuO full cell is fabricated to verify the high performance of GCuO in practical applications. This cell has a capacity of 70 mAh g-1 and a coulombic efficiency of 99 %. The GCuO composite is therefore a promising candidate for use as an anode material in advanced Li- or Na-ion batteries.

8.
Appl Opt ; 56(13): 3673-3678, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28463251

ABSTRACT

An independent component analysis-based simultaneous phase-shifting dual-wavelength interferometry approach is proposed. By using a one-time phase-shifting procedure, the simultaneous phase-shifting operation of two illumination wavelengths can be implemented, and then the background intensity and two orthogonal independent components of each single wavelength can be separated from a sequence of simultaneous phase-shifting dual-wavelength interferograms with random phase shifts. Subsequently, the wrapped phases of single wavelength can be calculated by above two orthogonal independent components; thus the unambiguous phase of synthetic wavelength can be achieved. Both the simulation and experimental results show that the proposed approach reveals the advantages of high accuracy, rapid speed, high stability, and good adaptability for arbitrary phase shifts.

9.
ACS Appl Mater Interfaces ; 8(3): 1733-41, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26720592

ABSTRACT

One-dimensional flexible metallic nanowires (NWs) are of considerable interest for next-generation wearable devices. The unavoidable challenge for a wearable electrode is the assurance of high conductivity, flexibility, and durability with economically feasible materials and simple manufacturing processes. Here, we use a straightforward solvothermal method to prepare a flexible conductive material that contains reduced graphene oxide (RGO) nanosheets bridging oriented copper NWs. The GO-assistance route can successfully meet the criteria listed above and help the composite films maintain high conductivity and durable flexibility without any extra treatment, such as annealing or acid processes. The composite film exhibits a high electrical performance (0.808 Ω·sq(-1)) without considerable change over 30 days under ambient conditions. Moreover, the Cu NW-RGO composites can be deposited on polyester cloth as a lightweight wearable electrode with high durability and simple processability and are very promising for a wide variety of electronic devices.

10.
Small ; 11(35): 4576-83, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26061729

ABSTRACT

In this work, a whole manufacturing process of the curved copper nanowires (CCNs) based flexible transparent conductive electrode (FTCE) is reported with all solution processes, including synthesis, coating, and networking. The CCNs with high purity and good quality are designed and synthesized by a binary polyol coreduction method. In this reaction, volume ratio and reaction time are the significant factors for the successful synthesis. These nanowires have an average 50 nm in width and 25-40 µm range in length with curved structure and high softness. Furthermore, a meniscus-dragging deposition (MDD) method is used to uniformly coat the well-dispersed CCNs on the glass or polyethylene terephthalate substrate with a simple process. The optoelectrical property of the CCNs thin films is precisely controlled by applying the MDD method. The FTCE is fabricated by networking of CCNs using solvent-dipped annealing method with vacuum-free, transfer-free, and low-temperature conditions. To remove the natural oxide layer, the CCNs thin films are reduced by glycerol or NaBH4 solution at low temperature. As a highly robust FTCE, the CCNs thin film exhibits excellent optoelectrical performance (T = 86.62%, R(s) = 99.14 Ω â—»(-1)), flexibility, and durability (R/R(0) < 1.05 at 2000 bending, 5 mm of bending radius).

11.
Chemistry ; 21(18): 6690-4, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25777248

ABSTRACT

Cu3Sn alloy nanocrystals are synthesized by sequential reduction of Cu and Sn precursors through a gradual increase of the reaction temperature. By transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), UV/Vis spectroscopy, and X-ray diffraction (XRD) analyses, the alloy formation mechanism of Cu3Sn nanocrystals has been studied. The incremental increase of the reaction temperature sequentially induces the reduction of Sn, the diffusion of Sn into the preformed Cu nanocrystals, resulting in the intermediate phase of Cu-Sn alloy nanocrystals, and then the formation of Cu3Sn alloy nanocrystals. We anticipate that the synthesis of Cu3Sn alloy nanocrystals encourages studies toward the synthesis of various alloy nanomaterials.

12.
Small ; 10(24): 5047-52, 2014 Dec 29.
Article in English | MEDLINE | ID: mdl-25098911

ABSTRACT

Oxidation-resistant copper nanowires (Cu NWs) are synthesized by a polyol reduction method. These Cu NWs show excellent oxidation resistance, good dispersibility, and have a low sintering temperature. A Cu NW-based flexible, foldable, and free-standing electrode is fabricated by filtration and a sintering process. The electrode also exhibits high electrical conductivity even bending, folding, and free-standing.

SELECTION OF CITATIONS
SEARCH DETAIL
...