Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20937, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017022

ABSTRACT

The magnetic chitosan/sludge biochar composite adsorbent was prepared using chitosan, Fe3O4, and sludge biochar as raw materials. The composite adsorbent was able to achieve rapid solid-liquid separation under an applied magnetic field. The morphology and microstructure of the composite adsorbent were characterized by FTIR, XRD, SEM, VSM, and BET analysis. The adsorption performance of the composite adsorbent on Cu2+ was investigated through static adsorption experiments, and the effects of adsorbent dosage, initial concentration of Cu2+, initial pH of the solution, and adsorption temperature on the adsorption efficiency of Cu2+ were discussed. The results showed that chitosan and Fe3O4 were successfully loaded on sludge biochar. When the initial concentration of Cu2+ was 30 mg/L, the dosage of the magnetic chitosan/sludge biochar composite material was 0.05 g, the adsorption time was 180 min, pH was 5, and the temperature was room temperature, the maximum removal rate of Cu2+ reached 99.77%, and the maximum adsorption capacity was 55.16 mg/g. The adsorption kinetics and adsorption isotherm data fitted well with the pseudo-second-order kinetic model and Langmuir adsorption isotherm model, indicating that the adsorption process was chemisorption with monolayer coverage.

2.
Small ; 19(19): e2207031, 2023 May.
Article in English | MEDLINE | ID: mdl-36793252

ABSTRACT

The charge transfer within heterojunction is crucial for the efficiency and stability of photocatalyst for overall water splitting (OWS). Herein, InVO4 nanosheets have been employed as a support for the lateral epitaxial growth of ZnIn2 S4 nanosheets to produce hierarchical InVO4 @ZnIn2 S4 (InVZ) heterojunctions. The distinct branching heterostructure facilitates active site exposure and mass transfer, further boosting the participation of ZnIn2 S4 and InVO4 for proton reduction and water oxidation, respectively. The unique Z-scheme modulated charge transfer, visualized by simulation and in situ analysis, has been proved to promote the spatial separation of photoexcited charges and strengthen the anti-photocorrosion capability of InVZ. The optimized InVZ heterojunction presents improved OWS (153.3 µmol h-1  g-1 for H2 and 76.9 µmol h-1  g-1 for O2 ) and competitive H2 production (21090 µmol h-1  g-1 ). Even after 20 times (100 h) of cycle experiment, it still holds more than 88% OWS activity and a complete structure.

3.
Environ Sci Process Impacts ; 23(8): 1088-1100, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34292285

ABSTRACT

The consumption and production of antibiotics in China rank highest in the world. As such, the occurrence of antibiotics in environmental media of China has raised significant concerns. Rivers play an important role in the sustainable development of China's economy and society, possibly causing high levels and detection frequencies of antibiotics in the aquatic environment of rivers in China. Therefore, it is necessary to understand the distribution and risk level of antibiotics in rivers. From south to north, China has seven major rivers vertically and horizontally. They are Yangtze River, Yellow River, Hai River, Liao River, Huai River, Songhua River and Pearl River. In this review, we made an extensive literature survey and published all studies on antibiotic concentrations in seven river systems of China from 2010 to 2020 were sorted out to provide a clear draw of the distribution characteristics of antibiotics. We found that 70 antibiotics have been detected in the seven major river systems. 13 typical antibiotics in surface waters of seven river systems were systematically reviewed and ecological risk assessment was conducted. The occurrence frequencies of high-risk antibiotics in surface waters followed the rank order: ETM-H2O > CIP > OFX > SMX > NOR. The RQs values of seven rivers decreased in the order of Hai River (1.58-18 094.3) > Liao River (1.14-290.23) > Pearl River (2.11-118.25) > Yangtze River (0.3-64.78) > Yellow River (7.56-35.45) > Songhua River (0.03-22.26) > Huai River (1.87-20.83).


Subject(s)
Rivers , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , China , Environmental Monitoring , Risk Assessment , Water Pollutants, Chemical/analysis
4.
ACS Appl Mater Interfaces ; 12(38): 43281-43288, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32845603

ABSTRACT

The evolution of anisotropic strain in epitaxial Pr0.5Sr0.5MnO3 films grown on (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7(110) substrates has been characterized by off-specular X-ray reciprocal space mappings on the (130), (310), (222), and (222̅) reflections in the scattering zone containing the [110] axis. We demonstrate that a multistage hierarchical structural evolution (single-domain-like structure, domain ordering, twin domains, and/or periodic structural modulations) occurs as the film thickness increases, and the structural modulation between the two transverse in-plane [11̅0] and [001] directions is quite different due to the monoclinic distortion of the film. We then show the relationship between the distribution of diffraction spots in reciprocal space and their corresponding domain configurations in real space under various thicknesses, which is closely correlated with thickness-dependent magnetic and magnetotransport properties. More importantly, the distribution and annihilation dynamics of the domain ordering are imaged utilizing home-built magnetic force microscope, revealing that the structural domains tilted toward either the [001] or [001̅] direction are arranged along the [11̅1] and [1̅11] crystal orientations. The direct visualization and dynamics of anisotropic-strain-related domain ordering will open a new path toward the control and manipulation of domain engineering in strongly correlated perovskite oxide films.

6.
Phys Rev Lett ; 121(8): 086806, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30192582

ABSTRACT

The effect of a coherence resonance is observed experimentally in a GaAs/Al_{0.45}Ga_{0.55}As superlattice under dc bias at room temperature, which is driven by noise. For an applied voltage, for which no current self-oscillations are observed, regular current self-oscillations with a frequency of about 82 MHz are induced by exceeding a certain noise amplitude. In addition, a novel kind of a stochastic resonance is identified, which is triggered by the coherence resonance. This stochastic resonance appears when the device is driven by an external ac signal with a frequency, which is relatively close to that of the regular current self-oscillations at the coherence resonance. The intrinsic oscillation mode in the coherence resonance is found to be phase locked by an extremely weak ac signal. It is demonstrated that an excitable superlattice device can be used for the fast detection of weak signals submerged in noise. These results are very well reproduced by results using numerical simulations based on a sequential resonant tunneling model of nonlinear electron transport in semiconductor superlattices.

8.
Phys Rev E ; 95(1-1): 012218, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208354

ABSTRACT

Noise-enhanced chaos in a doped, weakly coupled GaAs/Al_{0.45}Ga_{0.55}As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.

SELECTION OF CITATIONS
SEARCH DETAIL
...