Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 332: 118357, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38763374

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chuanminshen violaceum M. L. Sheh & R. H. Shan (CV) is used as a medicine with roots, which have the effects of benefiting the lungs, harmonizing the stomach, resolving phlegm and detoxifying. Polysaccharide is one of its main active components and has various pharmacological activities, but the structural characterization and pharmacological activities of polysaccharide from the stems and leaves parts of CV are still unclear. AIM OF THE STUDY: The aim of this study was to investigate the optimal extraction conditions for ultrasound-assisted extraction of polysaccharide from CV stems and leaves, and to carry out preliminary structural analyses, anti-inflammatory and antioxidant effects of the obtained polysaccharide and to elucidate the underlying mechanisms. MATERIALS AND METHODS: The ultrasonic-assisted extraction of CV stems and leaves polysaccharides was carried out, and the response surface methodology (RSM) was used to optimize the extraction process to obtain CV polysaccharides (CVP) under the optimal conditions. Subsequently, we isolated and purified CVP to obtain the homogeneous polysaccharide CVP-AP-I, and evaluated the composition, molecular weight, and structural features of CVP-AP-I using a variety of technical methods. Finally, we tested the pharmacological activity of CVP-AP-Ⅰ in an LPS-induced model of oxidative stress and inflammation in intestinal porcine epithelial cells (IPEC-J2) and explored its possible mechanism of action. RESULTS: The crude polysaccharide was obtained under optimal extraction conditions and subsequently isolated and purified to obtain CVP-AP-Ⅰ (35.34 kDa), and the structural characterization indicated that CVP-AP-Ⅰ was mainly composed of galactose, galactose, rhamnose and glucose, which was a typical pectic polysaccharide. In addition, CVP-AP-Ⅰ attenuates LPS-induced inflammation and oxidative stress by inhibiting the expression of pro-inflammatory factor genes and proteins and up-regulating the expression of antioxidant enzyme-related genes and proteins in IPEC-J2, by a mechanism related to the activation of the Nrf2/Keap1 signaling pathway. CONCLUSION: The results of this study suggest that the polysaccharide isolated from CV stems and leaves was a pectic polysaccharide with similar pharmacological activities as CV roots, exhibiting strong anti-inflammatory and antioxidant activities, suggesting that CV stems and leaves could possess the same traditional efficacy as CV roots, which is expected to be used in the treatment of intestinal diseases.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Plant Leaves , Plant Stems , Polysaccharides , Plant Leaves/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Polysaccharides/chemistry , Animals , Plant Stems/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Mice , Swine , Plant Extracts/pharmacology , Plant Extracts/chemistry , Intestines/drug effects , RAW 264.7 Cells
2.
Int J Biol Macromol ; 268(Pt 2): 131816, 2024 May.
Article in English | MEDLINE | ID: mdl-38677682

ABSTRACT

Paeoniae Radix alba is used in Traditional Chinese Medicine for the treatment of gastrointestinal disorders, immunomodulatory, cancer, and other diseases. In the current study, the yield of Paeoniae Radix alba polysaccharide (PRP) was significantly increased with optimal ultrasound-assisted extraction compared to hot water extraction. Further, an acidic polysaccharide (PRP-AP) was isolated from PRP after chromatographic separation and was characterized as a typical pectic polysaccharide with side chains of arabinogalactans types I and II. Moreover, it showed antioxidant effects on LPS-induced damage on IPEC-J2 cells determined by qRT-PCR and ELISA, including decreasing the pro-inflammatory factors' expressions and increasing the antioxidant enzymes activities, which was shown to be related to the Nrf2/Keap1 pathway modulated by PRP-AP. The metabolites change (such as itaconate, cholesterol sulfate, etc.) detected by untargeted metabolomic analysis in cells was also shown to be modulated by PRP-AP, and these metabolites were further utilized and protected cells damaged by LPS. These results revealed the cellular active mechanism of the macromolecular PRP-AP on protecting cells, and supported the hypothesis that PRP-AP has strong benefits as an alternative dietary supplement for the prevention of intestinal oxidative stress by modulating cellular metabolism.


Subject(s)
Antioxidants , Paeonia , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Paeonia/chemistry , Ultrasonic Waves , Cell Line , Animals , Oxidative Stress/drug effects , Chemical Fractionation/methods , Lipopolysaccharides/pharmacology
3.
Front Immunol ; 14: 1159291, 2023.
Article in English | MEDLINE | ID: mdl-37153605

ABSTRACT

Aging is a biological process of progressive deterioration of physiological functions, which poses a serious threat to individual health and a heavy burden on public health systems. As population aging continues, research into anti-aging drugs that prolong life and improve health is of particular importance. In this study, the polysaccharide from stems and leaves of Chuanminshen violaceum was obtained with water extraction and alcohol precipitation, and then separated and purified with DEAE anion exchange chromatography and gel filtration to obtain CVP-AP-I. We gavaged natural aging mice with CVP-AP-I and performed serum biochemical analysis, histological staining, quantitative real-time PCR (qRT-PCR) and ELISA kit assays to analyze inflammation and oxidative stress-related gene and protein expression in tissues, and 16SrRNA to analyze intestinal flora. We found that CVP-AP-I significantly improved oxidative stress and inflammatory responses of the intestine and liver, restored the intestinal immune barrier, and balanced the dysbiosis of intestinal flora. In addition, we revealed the potential mechanism behind CVP-AP-I to improve intestinal and liver function by regulating intestinal flora balance and repairing the intestinal immune barrier to regulate the intestinal-liver axis. Our results indicated that C. violaceum polysaccharides possessed favorable antioxidant, anti-inflammatory and potentially anti-aging effects in vivo.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Oxidative Stress , Polysaccharides/pharmacology , Polysaccharides/chemistry , Aging , Plant Components, Aerial
4.
Int J Biol Macromol ; 242(Pt 1): 124689, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37148926

ABSTRACT

The roots of Angelica sinensis have been used in Traditional Chinese Medicine for thousands of years. However, tons of aerial parts of this herb (aboveground part) are commonly discarded during the process of root preparations. A polysaccharide (ASP-Ag-AP) in the aboveground parts of A. sinensis was isolated and preliminarily characterized as typical plant pectin. ASP-Ag-AP exhibited noticeable protective effects against dextran sodium sulfate (DSS)-induced colitis, including reduction of colonic inflammation, modulation of barrier function, and alteration of gut microbiota and serum metabolite profile. Anti-inflammatory effects of ASP-Ag-AP were observed by inhibiting TLR4/MyD88/NF-κB signaling pathway in vitro and in vivo. Additionally, the level of serum metabolite 5-methyl-dl-tryptophan (5-MT) was reduced by DSS and restored by ASP-Ag-AP, which also negatively correlated with Bacteroides, Alistipes, Staphylococcus and pro-inflammatory factors. The protection from inflammatory stress on intestinal porcine enterocytes cells (IPEC-J2) of 5-MT was observed through the inhibition of TLR4/MyD88/NF-κB pathway. Besides, 5-MT also exhibited robust anti-inflammatory effect in colitis mice with improving colitis symptoms, barrier function and gut microbiota, which was the same as presented by ASP-Ag-AP. Therefore, ASP-Ag-AP could be a promising agent for colitis prevention and 5-MT could be the signal metabolite of ASP-Ag-AP on defending against intestinal inflammatory stress.


Subject(s)
Angelica sinensis , Colitis , Gastrointestinal Microbiome , Mice , Animals , Swine , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Angelica sinensis/metabolism , Toll-Like Receptor 4/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Polysaccharides/therapeutic use , Anti-Inflammatory Agents/pharmacology , Dextran Sulfate/adverse effects , Disease Models, Animal
5.
Carbohydr Polym ; 306: 120626, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36746576

ABSTRACT

The roots of Salvia miltiorrhiza have been used in Traditional Chinese Medicine for thousands of years. However, tons of aerial parts of this plant are usually discarded in the production of roots preparation. To make better use of these plant resources, the polysaccharide isolated from the aerial part of S. miltiorrhiza was investigated for its potential protection against intestinal diseases. A pectic polysaccharide (SMAP-1) was isolated and characterized being composed of homogalacturonan as the main chain and rhamnogalacturonan type I as ramified region, with side chains including arabinans and possible arabinogalactan type I and II. SMAP-1 exhibited robust protective effects against dextran sodium sulfate (DSS)-induced colitis and restored colitis symptoms, colonic inflammation, and barrier functions. Anti-oxidative effects were also observed by up-regulating Nrf2/Keap1 signaling pathway. Additionally, the level of serum 5-methoxyindole-3-carboxaldehyde (5-MC) was restored by SMAP-1 identified in metabolomic analysis, being correlated with the aforementioned effects. Protection against oxidative stress on intestinal porcine enterocyte cells (IPEC-J2) by 5-MC was observed through the activation of Nrf2/Keap1 system, as also shown by SMAP-1. In conclusion, SMAP-1 could be a promising candidate for colitis prevention, and 5-MC could be the signal metabolite of SMAP-1 in protecting against oxidative stress in the intestine.


Subject(s)
Colitis , Salvia miltiorrhiza , Animals , Swine , NF-E2-Related Factor 2/metabolism , Salvia miltiorrhiza/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Colitis/chemically induced , Colitis/drug therapy , Signal Transduction , Polysaccharides/adverse effects , Dextran Sulfate/toxicity
6.
Front Nutr ; 9: 992102, 2022.
Article in English | MEDLINE | ID: mdl-36204377

ABSTRACT

One purified neutral polysaccharide fraction was obtained from the rhizome of Polygonatum sibiricum by DEAE ion exchange and gel chromatography. Structure elucidation was performed by methanolysis, methylation, FT-IR, and NMR. The results indicated that PSP-NP was composed of 1,4-ß-D-Gal,1, 4, 6-ß-D-Gal, T-α-D-Man,1, 4-α-D-Glc, and T-α-D-Glc with a molecular weight of 43.0 kDa. We supplied this polysaccharide to aged mice and found it is of benefits to intestinal functions, as indicated by better tissue integrity and motility, improved oxidative stress and inflammation, reduced intestinal permeability and serum LPS level, as well as balanced gut microbial composition and short-chain fatty acids production. These results display a novel Polygonatum sibiricum polysaccharide to improve the intestinal function of aged mice, which provides pieces of evidence for its further development and utilization.

7.
Front Pharmacol ; 13: 937581, 2022.
Article in English | MEDLINE | ID: mdl-36091763

ABSTRACT

In this study, three acidic polysaccharides from different plant parts of Codonopsis pilosula var. Modesta (Nannf.) L. T. Shen were obtained by ion exchange chromatography and gel filtration chromatography, and the yields of these three polysaccharides were different. According to the preliminary experimental results, the antioxidant activities of the polysaccharides from rhizomes and fibrous roots (CLFP-1) were poor, and was thus not studied further. Due to this the structural features of polysaccharides from roots (CLRP-1) and aerial parts (CLSP-1) were the object for this study and were structurally characterized, and their antioxidant activities were evaluated. As revealed by the results, the molecular weight of CLRP-1and CLSP-1 were 15.9 kDa and 26.4 kDa, respectively. The monosaccharide composition of CLRP-1 was Ara, Rha, Fuc, Xyl, Man, Gal, GlcA, GalA in a ratio of 3.8: 8.4: 1.0: 0.8: 2.4: 7.4: 7.5: 2.0: 66.7, and Ara, Rha, Gal, GalA in a ratio of 5.8: 8.9: 8.0: 77.0 in for CLSP-1. The results of structural elucidation indicated that both CLRP-1 and CLSP-1 were pectic polysaccharides, mainly composed of 1, 4-linked galacturonic acid with long homogalacturonan regions. Arabinogalactan type I and arabinogalactan type II were presented as side chains. The antioxidant assay in IPEC-J2 cells showed that both CLRP-1 and CLSP-1 promoted cell viability and antioxidant activity, which significantly increase the level of total antioxidant capacity and the activity of superoxide dismutase, catalase, and decrease the content of malondialdehyde. Moreover, CLRP-1 and CLSP-1 also showed powerful antioxidant abilities in Caenorhabditis elegans and might regulate the nuclear localization of DAF-16 transcription factor, induced antioxidant enzymes activities, and further reduced reactive oxygen species and malondialdehyde contents to increase the antioxidant ability of Caenorhabditis elegans. Thus, these finding suggest that CLRP-1 and CLSP-1 could be used as potential antioxidants.

8.
J Ethnopharmacol ; 295: 115446, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35675860

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Angelica sinensis, has been commonly used in gynecology for centuries, and is normally applied divided into different parts in various clinical applications. At present, the majority of existing studies focus on the volatile oil and ferulic acid extracted from different parts of A. sinensis, but there is a dearth of scientific information on its water-soluble polysaccharides. AIM OF THE STUDY: The structures of polysaccharides from plants, have been reported contributing to multiple pharmacological activities such as anti-oxidative, anti-inflammatory, anti-tumor and liver protection. Therefore, the focus of this study was on its anti-oxidative and anti-inflammatory activities in vitro, which would be based on the various polysaccharides with distinct structures obtained from different parts of the A. sinensis root. MATERIALS AND METHODS: Four parts of A. sinensis root were separated according to the Chinese Pharmacopoeia: head, body, tail and whole body. Crude polysaccharides were obtained by water extraction and ethanol precipitation method, and were further fractionated by DEAE Sepharose chromatographic column and gel filtration. The comparison of ASPs from different root parts were performed, including chemical compositions determined by colorimetric analysis, monosaccharide compositions measured by high performance liquid chromatography (HPLC), glycosidic linkage units determined by methylation and gas chromatography-mass spectrometry (GC-MS), organic functional groups determined by FT-IR, molecular weight (Mw) demarcated by gel permeation chromatography, and the viscosities and solubilities were measured according to method published in the previous report with minor modification. In vitro biological activities of APSs were compared on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress models on IPEC-J2 cells. RESULTS: Four purified polysaccharides, ASP-H-AP, ASP-B-AP, ASP-T-AP and ASP-Hb-AP from the root of A. sinensis, were obtained, and consisted of various contents of protein and the polyphenol. They were possibly pectic polysaccharides with a long homogalacturonan region as the main backbone and ramified with rhamnogalacturonan I region, but they were differed by subregions and the relative contents of glycosidic units. The Mw of four pectic polysaccharides were ranged from 67.9-267.7 kDa. The infrared spectrum also showed that the four polysaccharide fractions contained the characteristic peaks of polysaccharides. Their distinct primary structure could lead to a variety of biological activities. In vitro biological assays suggested that four polysaccharide fractions can protect IPEC-J2 cells against the LPS-induced inflammation by down-regulating inflammation factors and related genes on IPEC-J2 cells. These polysaccharides also could alleviate oxidative stress on IPEC-J2 cells by up-regulating the gene and protein expressions of antioxidant enzymes. It was concluded that ASP-H-AP possessed better anti-inflammatory and anti-oxidative effects, while those of ASP-T-AP was relatively poor among the four polysaccharide fractions. CONCLUSION: All results indicated that the structure of pectic polysaccharides from different root parts of A. sinensis differed, which lead to their distinct anti-inflammatory and anti-oxidative activities. This may also be one of the factors why different parts of A. sinensis showed various pharmacological activities and applied independently in traditional use. In addition, it would be valuable for further studies on structure-activity relationship of polysaccharides obtained by different root parts of A. sinensis.


Subject(s)
Angelica sinensis , Angelica sinensis/chemistry , Anti-Inflammatory Agents/pharmacology , Inflammation , Lipopolysaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Spectroscopy, Fourier Transform Infrared , Water/chemistry
9.
Front Pharmacol ; 13: 786141, 2022.
Article in English | MEDLINE | ID: mdl-35237158

ABSTRACT

An inulin (CPPF), isolated from a traditional Chinese herbal medicine Codonopsis pilosula, was characterized and demonstrated with potential prebiotic activity in vitro before. Based on its non-digested feature, the intestinal mucosa and microbiota modulatory effects in vivo on immunosuppressed mice were investigated after oral administration of 200, 100 and 50 mg/kg of CPPF for 7 days. It was demonstrated that the secretions of sIgA and mucin 2 (Muc2) in ileum were improved by CPPF, and the anti-inflammatory activities in different intestine parts were revealed. The intestine before colon could be the target active position of CPPF. As a potential prebiotic substance, a gut microbiota restorative effect was also presented by mainly modulating the relative abundance of Eubacteriales, including Oscillibacter, unidentified Ruminococcus and Lachnospiraceae after high-throughput pyrosequencing of V4 region of 16S rRNA analysis. All these results indicated that this main bioactive ingredient inulin from C. pilosula was a medicinal prebiotic with enhancing mucosal immune, anti-inflammatory and microbiota modulatory activities.

10.
Food Funct ; 12(21): 10828-10841, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34617945

ABSTRACT

In this study, the Nelumbo nucifera leaf polysaccharide (NNLP) was isolated by hot water extraction and ethanol precipitation. DEAE anion exchange chromatography and gel filtration were further performed to obtained the purified fraction NNLP-I-I, the molecular weight of which was 16.4 kDa. The monosaccharide composition analysis and linkage units determination showed that the fraction NNLP-I-I was a pectic polysaccharide. In addition, the NMR spectra analysis revealed that NNLP-I-I mainly consisted of a homogalacturonan backbone and rhamnogalacturonan I, containing a long HG region and short RG-I region, with AG-II and 1-3 linked rhamnose as side chains. The biological studies demonstrated that NNLP-I-I displayed antioxidant properties through mediating the Nrf2-regulated intestinal cellular antioxidant defense, which could protect cultured intestinal cells from oxidative stress and improve the intestinal function of aged mice.


Subject(s)
Antioxidants/pharmacology , Nelumbo/chemistry , Pectins/pharmacology , Plant Leaves/chemistry , Animals , Antioxidants/chemistry , Cell Line , Cell Survival/drug effects , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Malondialdehyde , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pectins/chemistry , Superoxide Dismutase , Swine
11.
J Sci Food Agric ; 101(14): 6043-6052, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33857333

ABSTRACT

BACKGROUND: Codonopsis pilosula and Codonopsis tangshen are plants widely used in traditional Chinese medicine. Two pectic polysaccharides from the roots of C. pilosula and C. tangshen named as CPP-1 and CTP-1 were obtained by boiling water extraction and column chromatography. RESULTS: The core structures of both CPP-1 and CTP-1 comprise the long homogalacturonan region (HG) as the backbone and the rhamnogalacturonan I (RG-I) region as the side chains. CPP-1 has methyl esterified galacturonic acid units and a slightly lower molecular weight than CTP-1. Biological testing suggested that CPP-1 and CTP-1 can protect IPEC-J2 cells against the H2 O2 -induced oxidative stress by up-regulating nuclear factor-erythroid 2-related factor 2 and related genes in IPEC-J2 cells. The different antioxidative activities of polysaccharides from different source of C. pilosula may be result of differences in their structures. CONCLUSION: All of the results indicated that pectic polysaccharides CPP-1 and CTP-1 from different species of C. pilosula roots could be used as a potential natural antioxidant source. These findings will be valuable for further studies and new applications of pectin-containing health products. © 2021 Society of Chemical Industry.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Codonopsis/chemistry , Pectins/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Cell Line , Humans , NF-E2 Transcription Factor/genetics , NF-E2 Transcription Factor/metabolism , Oxidative Stress/drug effects , Pectins/pharmacology , Plant Roots/chemistry
12.
Int J Biol Macromol ; 175: 473-480, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33571586

ABSTRACT

Platycodonis Radix is widely used as homology of medicine and food in China; polysaccharides are thought to be one of its functional constituents. In this study, a pectic polysaccharide, PGP-I-I, was obtained from the root of the traditional medicine plant Platycodon grandiflorus through ion exchange chromatography and gel filtration. This was characterized being mainly composed of 1,5-α-L-arabinan and both arabinogalactan type I (AG-I) and II chains linked to rhamnogalacturonan I (RG-I) backbone linked to longer galacturonan chains. In vitro bioactivity study showed that PGP-I-I could restore the intestinal cellular antioxidant defense under the condition of hydrogen peroxide (H2O2) treatment through promoting the expressions of cellular antioxidant genes and protect against oxidative damages.


Subject(s)
Pectins/chemistry , Platycodon/chemistry , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Line , Chromatography, Gel , Chromatography, Ion Exchange , Dietary Carbohydrates , Galactans/chemistry , Hydrogen Peroxide , Plant Extracts/chemistry , Plant Roots/chemistry , Polysaccharides/chemistry , Swine
13.
J Sci Food Agric ; 101(6): 2491-2499, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33063324

ABSTRACT

BACKGROUND: Codonopsis pilosula and C. tangshen are both plants widely used in traditional Chinese medicine. Polysaccharides, which are their primary active components, are thought to be important in their extensive use. In this study, two neutral polysaccharide fractions of C. pilosula (CPPN) and C. tangshen (CTPN) were obtained by fractionation on a DEAE-Sepharose column and characterized. RESULTS: It was confirmed that the neutral polymers CPPN and CTPN were ß-(2,1)-linked inulin-type fructans with non-reducing terminal glucose, and degree of polymerization (DP) of 19.6 and 25.2, respectively. The antioxidant and prebiotic activities in vitro were assayed based on IPEC-J2 cell lines and five strains of Lactobacillus. Results indicated that the effects of CPPN and CTPN were increased antioxidant defense in intestinal epithelial cells through enhanced cell viability, improved expression of total antioxidant capacity, glutathione peroxidase, superoxide dismutase and catalase, and reduced levels of malondialdehyde and lactic dehydrogenase. The prebiotic activity of CPPN and CTPN was demonstrated by the promoting effect on Lactobacillus proliferation in vitro. The different biological activities obtained between the two fractions are probably due to the different DP and thus molecular weights of CPPN and CTPN. CONCLUSION: The inulin fractions from C. pilosula and C. tangshen were natural sources of potential intestinal antioxidants as well as prebiotics, which will be valuable in further studies and new applications of inulin-containing health products. © 2020 Society of Chemical Industry.


Subject(s)
Antioxidants/chemistry , Codonopsis/chemistry , Drugs, Chinese Herbal/chemistry , Fructans/chemistry , Inulin/chemistry , Prebiotics/analysis , Antioxidants/isolation & purification , Antioxidants/pharmacology , Cell Line , Cell Survival/drug effects , Codonopsis/classification , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fructans/isolation & purification , Fructans/pharmacology , Humans , Inulin/isolation & purification , Inulin/pharmacology , Lactobacillus/drug effects , Lactobacillus/growth & development , Oxidative Stress/drug effects , Polymerization
14.
Article in English | MEDLINE | ID: mdl-32802111

ABSTRACT

The objectives of this study were to develop and optimize ultrasound-assisted extraction (UAE) for shikonin from Arnebia euchroma using response surface methodology (RSM) and to evaluate the antimicrobial activity of shikonin. The maximum yield of shikonin was 1.26% under the optimal extraction conditions (ultrasound power, 93 W; time, 87 min; temperature, 39°C; and liquid-solid ratio, 11 : 1). Shikonin showed inhibitory activity against standard strains and clinical isolates to varying extents (MICs ranging from 128 to 1024 µg/mL, MBCs ranging from 256 to 2048 µg/mL), and it was more effective for Gram-positive bacteria as indicated by lower MIC and MBC values. Time-kill curves revealed that antibacterial activity of shikonin exhibited a dose-response relationship. In summary, via this study, we identified ultrasound-assisted RSM as the optimal extraction method for shikonin, which is a potential material for the treatment of bacterial infections.

15.
Mediators Inflamm ; 2020: 2319616, 2020.
Article in English | MEDLINE | ID: mdl-32565722

ABSTRACT

Exosomes are small membrane vesicles that retain various substances such as proteins, nucleic acids, and small RNAs. Exosomes play crucial roles in many physiological and pathological processes, including innate immunity. Innate immunity is an important process that protects the organism through activating pattern recognition receptors (PRRs), which then can induce inflammatory factors to resist pathogen invasion. Toll-like receptor (TLR) is one member of PRRs and is important in pathogen clearance and nervous disease development. Although exosomes and TLRs are two independent materials, abundant evidences imply exosomes can regulate innate immunity through integrating with TLRs. Herein, we review the most recent data regarding exosome regulation of TLR pathways. Specifically, exosome-containing materials can regulate TLR pathways through the interaction with TLRs. This is a new strategy regulating immunity to resist pathogens and therapy diseases, which provide a potential method to cure diseases.


Subject(s)
Exosomes/metabolism , Immunity, Innate , Neoplasms/metabolism , Neovascularization, Pathologic , Nervous System Diseases/metabolism , Receptors, Pattern Recognition/metabolism , Toll-Like Receptors/metabolism , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Endocytosis , Humans , Lysosomes/metabolism , Mice , RNA, Small Interfering/metabolism , Signal Transduction
16.
Int J Biol Macromol ; 159: 704-713, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32422266

ABSTRACT

In this study, two pectic polysaccharides from stems of Codonopsis pilosula (CPSP-1) and C. tangshen (CTSP-1) were obtained by ion exchange chromatography and gel filtration. The molecular weight of CPSP-1 and CTSP-1 were 13.1 and 23.0 kDa, respectively. The results of structure elucidation indicated that both CPSP-1 and CTSP-1 are pectic polysaccharides with long homogalacturonan regions (HG) (some of galacturonic acid units were methyl esterified) and rhamnogalacturonan I (RG-I) regions. Side chains for CTSP-1 are both arabinogalactan type I (AG-I) and type II (AG-II), while CPSP-1 only has AG-II. The biological test demonstrated that CPSP-1 and CTSP-1 displayed an antioxidant property through mediating the intestinal cellular antioxidant defense system, which could protect cultured intestinal cells from oxidative stress induced oxidative damages and cell viability suppression. CPSP-1 and CTSP-I showed different bioactivities and mechanisms, which may be due to the difference in their structures.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Codonopsis/chemistry , Plant Stems/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals , Antioxidants/isolation & purification , Cell Line , Magnetic Resonance Spectroscopy , Molecular Structure , Molecular Weight , Monosaccharides , Polysaccharides/isolation & purification , Structure-Activity Relationship , Swine
17.
Molecules ; 24(20)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31600890

ABSTRACT

In this study, an acidic polysaccharide from Codonopsis pilosula Nannf. var. modesta (Nannf.) L. T. Shen (WCP-I) and its main fragment, WCP-Ia, obtained after pectinase digestion, were structurally elucidated and found to consist of a rhamnogalacturonan I (RG-I) region containing both arabinogalactan type I (AG-I) and type II (AG-II) as sidechains. They both expressed immunomodulating activity against Peyer's patch cells. Endo-1,4-ß-galactanase degradation gave a decrease of interleukine 6 (IL-6) production compared with native WCP-I and WCP-Ia, but exo-α-l-arabinofuranosidase digestion showed no changes in activity. This demonstrated that the stimulation activity partly disappeared with removal of ß-d-(1→4)-galactan chains, proving that the AG-I side chain plays an important role in immunoregulation activity. WCP-Ia had a better promotion effect than WCP-I in vivo, shown through an increased spleen index, higher concentrations of IL-6, transforming growth factor-ß (TGF-ß), and tumor necrosis factor-α (TNF-α) in serum, and a slight increment in the secretory immunoglobulin A (sIgA) and CD4+/CD8+ T lymphocyte ratio. These results suggest that ß-d-(1→4)-galactan-containing chains in WCP-I play an essential role in the expression of immunomodulating activity. Combining all the results in this and previous studies, the intestinal immune system might be the target site of WCP-Ia.


Subject(s)
Codonopsis/chemistry , Immunologic Factors/pharmacology , Immunomodulation/drug effects , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Animals , Cell Survival/drug effects , Hydrolysis , Immunity, Mucosal/drug effects , Immunologic Factors/chemistry , Mice , Molecular Structure , Monosaccharides/chemistry , Peyer's Patches/drug effects , Peyer's Patches/immunology , Peyer's Patches/metabolism , Plant Extracts/chemistry , Polysaccharides/chemistry , Spectrum Analysis
18.
Molecules ; 24(7)2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30934739

ABSTRACT

Platycodon grandiflorus is a plant widely used in traditional Chinese medicine, of which polysaccharides are reported to be the main components responsible for its bio-functions. In this work, the inulin-type fructan (PGF) was obtained by DEAE anion exchange chromatography from the water extracted from P. grandifloras. Characterization was performed with methanolysis, methylation, and NMR and the results showed that PGF is a ß-(2-1) linked fructan, with terminal glucose and with a degree of polymerization of 2⁻10. In order to study its biofunctions, the prebiotic and immunomodulation properties were assayed. We found that PGF exhibited good prebiotic activity, as shown by a promotion on six strains of lactobacillus proliferation. Additionally, the PGF also displayed direct immunomodulation on intestinal epithelial cells and stimulated the expressions of anti-inflammatory factors. These results indicated that the inulin from P. grandiflorus is a potential natural source of prebiotics as well as a potential intestinal immunomodulator, which will be valuable for further studies and new applications.


Subject(s)
Fructans/chemistry , Fructans/pharmacology , Immunomodulation/drug effects , Platycodon/chemistry , Prebiotics , Animals , Cell Line , Cell Survival/drug effects , Fructans/isolation & purification , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Swine
19.
Carbohydr Polym ; 203: 45-51, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30318234

ABSTRACT

Two polysaccharides, MDP-1 and MDP-2, were obtained from the fermentation liquid of M. dendrobii by anion exchange chromatography and gel filtration. Their chemical structures were measured by FT-IR, GC, 1H and 13C NMR spectra, indicating the mainly compositions of mannose, xylose, and galactose for MDP-1; galacturonic acid, galactose and rhamnose for MDP-2. Furthermore, the antioxidant activities of MDPs were investigated, showing different antioxidant activities, in which MDP-2 performed noticeable, with excellent superoxide radical activity better than BHT, high DPPH radical activity (IC50 at 227 µg/mL) comparable with BHT, moderate reducing power activity and hydroxyl radical scavenging activity. The results indicated that the fermentation liquid of M. dendrobii could be used as a potential natural source of antioxidant.


Subject(s)
Agaricales/chemistry , Free Radical Scavengers/chemistry , Polysaccharides/chemistry , Biphenyl Compounds/chemistry , Free Radical Scavengers/isolation & purification , Hexoses/chemistry , Hydroxyl Radical/chemistry , Picrates/chemistry , Polysaccharides/isolation & purification , Superoxides/chemistry
20.
Toxins (Basel) ; 10(10)2018 09 23.
Article in English | MEDLINE | ID: mdl-30249042

ABSTRACT

With continuous emergence and widespread of multidrug-resistant Staphylococcus aureus infections, common antibiotics have become ineffective in treating these infections in the clinical setting. Anti-virulence strategies could be novel, effective therapeutic strategies against drug-resistant bacterial infections. Sortase A (srtA), a transpeptidase in gram-positive bacteria, can anchor surface proteins that play a vital role in pathogenesis of these bacteria. SrtA is known as a potential antivirulent drug target to treat bacterial infections. In this study, we found that erianin, a natural bibenzyl compound, could inhibit the activity of srtA in vitro (half maximal inhibitory concentration-IC50 = 20.91 ± 2.31 µg/mL, 65.7 ± 7.2 µM) at subminimum inhibitory concentrations (minimum inhibitory concentrations-MIC = 512 µg/mL against S. aureus). The molecular mechanism underlying the inhibition of srtA by erianin was identified using molecular dynamics simulation: erianin binds to srtA residues Ile182, Val193, Trp194, Arg197, and Ile199, forming a stable bond via hydrophobic interactions. In addition, the activities of S. aureus binding to fibronectin and biofilm formation were inhibited by erianin, when co-culture with S. aureus. In vivo, erianin could improve the survival in mice that infected with S. aureus by tail vein injection. Experimental results showed that erianin is a potential novel therapeutic compound against S. aureus infections via affecting srtA.


Subject(s)
Aminoacyltransferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bibenzyls/pharmacology , Staphylococcus aureus/drug effects , Aminoacyltransferases/metabolism , Animals , Anti-Bacterial Agents/therapeutic use , Bacterial Adhesion/drug effects , Bacterial Proteins/metabolism , Bibenzyls/therapeutic use , Biofilms/drug effects , Cysteine Endopeptidases/metabolism , Fibrinogen/metabolism , Mice, Inbred BALB C , Molecular Docking Simulation , Phenol , Staphylococcal Infections/drug therapy , Staphylococcus aureus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...