Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 34(13): 72-83, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696605

ABSTRACT

Autism spectrum disorder has been emerging as a growing public health threat. Early diagnosis of autism spectrum disorder is crucial for timely, effective intervention and treatment. However, conventional diagnosis methods based on communications and behavioral patterns are unreliable for children younger than 2 years of age. Given evidences of neurodevelopmental abnormalities in autism spectrum disorder infants, we resort to a novel deep learning-based method to extract key features from the inherently scarce, class-imbalanced, and heterogeneous structural MR images for early autism diagnosis. Specifically, we propose a Siamese verification framework to extend the scarce data, and an unsupervised compressor to alleviate data imbalance by extracting key features. We also proposed weight constraints to cope with sample heterogeneity by giving different samples different voting weights during validation, and used Path Signature to unravel meaningful developmental features from the two-time point data longitudinally. We further extracted machine learning focused brain regions for autism diagnosis. Extensive experiments have shown that our method performed well under practical scenarios, transcending existing machine learning methods and providing anatomical insights for autism early diagnosis.


Subject(s)
Autism Spectrum Disorder , Brain , Deep Learning , Early Diagnosis , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/diagnosis , Infant , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Child, Preschool , Male , Female , Autistic Disorder/diagnosis , Autistic Disorder/diagnostic imaging , Autistic Disorder/pathology , Unsupervised Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...