Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Sci Total Environ ; 947: 174521, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972414

ABSTRACT

Chlorination is the most widely used disinfection technology due to its simplicity and continuous disinfection ability. However, the drawbacks of disinfection by-products and chlorine-resistant bacteria have gained increasing attention. Nowadays, ferrate (Fe(VI)) is a multifunctional and environmentally friendly agent which has great potential in wastewater reclamation and reuse. This study investigated synergistic Fe(VI) and chlorine technology for reclaimed water disinfection in terms of microbial control and chlorine decay mitigation. Specifically, synergistic disinfection significantly improved the inactivation efficiency on total coliform, Escherichia coli and heterotrophic bacteria compared to sole chlorination. Synergistic disinfection also exhibited superior performance on controlling the relative abundance of chlorine-resistant bacteria and pathogenic bacteria. In addition, the decay rate of residual chlorine was relatively lower after Fe(VI) pretreatment, which was beneficial for microbial control during the reclaimed water distribution process. Technical and economic analyses revealed that synergistic Fe(VI) and chlorine disinfection was suitable and feasible. Results of this study are believed to provide useful information and alternative options on the optimization of reclaimed water disinfection.

2.
J Hazard Mater ; 476: 135136, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39018597

ABSTRACT

This study investigates the effects of chlorine dioxide (ClO2) disinfection on the community structure, regrowth potential, and metabolic product secretion of disinfection-residual bacteria (DRB) in secondary effluent (SE), denitrification filter effluent (DFE), and ultrafiltration effluent (UE). Results show that ClO2 effectively reduces bacteria in SE and UE, achieving log removal values exceeding 3 at 1 mg/L within 30 min. A salient positive correlation (R2 > 0.95) exists between changes in total fluorescence intensity and disinfection efficacy. Post-treatment, Acinetobacter abundance increased in SE, while Pseudomonas decreased in DFE and UE. At lower ClO2 concentrations, Staphylococcus, Mycobacterium, Aeromonas, and Lactobacillus increased in DFE, but decreased at higher concentrations. After storage, bacterial counts in disinfected samples exceeded those in the control group, surpassing 105 CFU/mL. Despite an initial decline, species richness and evenness partially recovered but remained lower than control levels. Culturing DRB for 72 h showed elevated extracellular polymeric substances (EPS) secretion, quantified as total organic carbon (TOC), ranging from 5 to 27 mg/L, with significantly higher EPS in the disinfection group. Parallel factor analysis with self-organizing maps (PARAFAC-SOM) effectively differentiated water sample types and EPS fluorescent substances, underscoring the potential of three-dimensional fluorescence as an indirect measure of ClO2 disinfection efficacy.

3.
Huan Jing Ke Xue ; 45(6): 3176-3185, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897741

ABSTRACT

Rivers are important reservoirs of antibiotic resistance genes (ARGs). However, most current studies have focused on the temporal and spatial distribution, and data on the differences in the species and abundance of ARGs between urban and rural rivers is still lacking for certain areas. In view of this, two rural rivers and three urban rivers were selected in Shijiazhuang City. In both December 2020 and April 2021, sediments were collected at 15 sampling sites. Metagenomic sequencing technology was used to compare the differences in temporal-spatial variation for ARGs in sediments. The results showed that:① 162 and 79 ARGs were detected in urban (4 776 ±4 452) and rural rivers (1 043 ±632), respectively. The abundance and species of ARGs in urban rivers were higher than those in rural rivers. ② The relative abundances of sulfonamide (SAs,27 %), aminoglycoside (AGs,26 %), and multidrug (MDs,15 %) ARGs had the highest abundance in urban rivers, whereas the relative abundance of MDs ARGs was highest in rural rivers (65 %). On the whole, the complexity of ARGs in urban rivers was higher than that in rural rivers. ③ There was a significant positive correlation between SAs, AGs, MDs, tetracycline, phenicol, macrolides-lincosamids-streptogramins (MLS), ß-lactams, and diaminopyrimidine ARGs in urban rivers (P < 0.01); however, there was a significant negative correlation between glycopeptide ARGs and all types of ARGs (P < 0.05 and P < 0.01). There was a significant positive correlation between MDs and SAs ARGs in rural rivers (P < 0.05), but there was a significant negative correlation between amino aminocoumarin, peptide, rifamycin, and fosfomycin ARGs (P < 0.05 and P < 0.01). ④ For the temporal variation in urban rivers, 162 ARGs (4 776 ±4 452) and 148 ARGs (5 673 ±5 626) were detected in December and April, respectively. For the temporal variation in rural rivers, 79 species (1 043 ±632) and 46 species (467 ±183) were detected in December and April, respectively. ⑤ RDA analysis results showed that the spatial-temporal distributions of ARGs in urban and rural rivers were different. Correlation analysis showed that the ARGs in urban rivers were significantly correlated with the number of industrial enterprises, whereas the ARGs in rural rivers were significantly correlated with the output value of animal husbandry. In general, this study identified the main influencing factors for ARGs in different rivers and provided data support for ARGs risk management in different rivers.


Subject(s)
Cities , Drug Resistance, Microbial , Geologic Sediments , Rivers , Geologic Sediments/microbiology , China , Drug Resistance, Microbial/genetics , Environmental Monitoring , Genes, Bacterial , Spatio-Temporal Analysis , Anti-Bacterial Agents/analysis
4.
Huan Jing Ke Xue ; 45(6): 3186-3195, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897742

ABSTRACT

This study primarily focused on the regional disparities in both water quality criteria and ecological risks attributed to cadmium presence within the surface waters of the Yangtze River Basin. In the initial phase, the long-term water quality criteria for cadmium were recalibrated in accordance with the guidelines outlined in China's "Water Quality Criteria for Freshwater Aquatic Organisms-Cadmium," accounting for the prevalent hardness distribution within the Yangtze River Basin's surface water. Subsequently, a more refined revision was undertaken considering the specific characteristics of the species residing within the Yangtze River Basin. This undertaking led to a comprehensive interpretation of the regional variations in both the distribution of long-term water quality criteria values and the risk quotient distribution of cadmium throughout the Yangtze River Basin. The incorporation of hardness and species-specific attributes resulted in a revised range of long-term water quality criteria for cadmium across different urban locales within the Yangtze River Basin. Notably, the recalibrated values ranged from 0.08 µg·L-1 as the lowest threshold to 0.75 µg·L-1 as the upper limit, signifying a tenfold differentiation. Correspondingly, the urban average annual risk quotient associated with cadmium exposure demonstrated a variation from 0.035 to 1.12, marking a significant 32-fold discrepancy between the lowest and highest values. It is essential to highlight that regions of paramount importance, such as the confluence area connecting the upper and middle stretches of the Yangtze River Basin and the intricate Dongting Lake system, exhibited noteworthy ecological risks attributed to cadmium presence. Consequently, further in-depth investigations into these critical regions are imperative for a comprehensive understanding of the associated risks.

5.
J Biol Chem ; 300(7): 107413, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810698

ABSTRACT

Ataxin-2 (Atx2) is a polyglutamine (polyQ) tract-containing RNA-binding protein, while its polyQ expansion may cause protein aggregation that is implicated in the pathogenesis of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2). However, the molecular mechanism underlying how Atx2 aggregation contributes to the proteinopathies remains elusive. Here, we investigated the influence of Atx2 aggregation on the assembly and functionality of cellular processing bodies (P-bodies) by using biochemical and fluorescence imaging approaches. We have revealed that polyQ-expanded (PQE) Atx2 sequesters the DEAD-box RNA helicase (DDX6), an essential component of P-bodies, into aggregates or puncta via some RNA sequences. The N-terminal like-Sm (LSm) domain of Atx2 (residues 82-184) and the C-terminal helicase domain of DDX6 are responsible for the interaction and specific sequestration. Moreover, sequestration of DDX6 may aggravate pre-mRNA mis-splicing, and interfere with the assembly of cellular P-bodies, releasing the endoribonuclease MARF1 that promotes mRNA decay and translational repression. Rescuing the DDX6 protein level can recover the assembly and functionality of P-bodies, preventing targeted mRNA from degradation. This study provides a line of evidence for sequestration of the P-body components and impairment of the P-body homeostasis in dysregulating RNA metabolism, which is implicated in the disease pathologies and a potential therapeutic target.


Subject(s)
Ataxin-2 , DEAD-box RNA Helicases , Homeostasis , Peptides , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , Ataxin-2/metabolism , Ataxin-2/genetics , Peptides/metabolism , Peptides/chemistry , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , HEK293 Cells , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/genetics , Protein Aggregates , RNA Splicing , Protein Domains , RNA Precursors/metabolism , RNA Precursors/genetics
7.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38328096

ABSTRACT

Objectives: Sjögren's Disease (SjD) is an autoimmune disorder characterized by progressive dysfunction, inflammation and destruction of salivary and lacrimal glands, and by extraglandular manifestations. Its etiology and pathophysiology remain incompletely understood, though a role for autoreactive B cells has been considered key. Here, we investigated the role of effector and regulatory T cells in the pathogenesis of SjD. Methods: Histological analysis, RNA-sequencing and flow cytometry were conducted on glands, lungs, eyes and lymphoid tissues of mice with regulatory T cell-specific deletion of stromal interaction proteins (STIM) 1 and 2 ( Stim1/2 Foxp3 ), which play key roles in calcium signaling and T cell function. The pathogenicity of T cells from Stim1/2 Foxp3 mice was investigated through adoptively transfer into lymphopenic host mice. Additionally, single-cell transcriptomic analysis was performed on peripheral blood mononuclear cells (PBMCs) of patients with SjD and control subjects. Results: Stim1/2 Foxp3 mice develop a severe SjD-like disorder including salivary gland (SG) and lacrimal gland (LG) inflammation and dysfunction, autoantibodies and extraglandular symptoms. SG inflammation in Stim1/2 Foxp3 mice is characterized by T and B cell infiltration, and transcriptionally by a Th1 immune response that correlates strongly with the dysregulation observed in patients with SjD. Adoptive transfer of effector T cells from Stim1/2 Foxp3 mice demonstrates that the SjD-like disease is driven by interferon (IFN)-γ producing autoreactive CD4 + T cells independently of B cells and autoantiboodies. scRNA-seq analysis identifies increased Th1 responses and attenuated memory Treg function in PBMCs of patients with SjD. Conclusions: We report a more accurate mouse model of SjD while providing evidence for a critical role of Treg cells and IFN-γ producing Th1 cells in the pathogenesis of SjD, which may be effective targets for therapy.

8.
Sci Total Environ ; 919: 170784, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340834

ABSTRACT

Reclaimed water with nitrogen, phosphorus, and other contaminants may trigger algal blooms during its ecological utilization in replenishing rivers or lakes. However, the effect of reclaimed water on algal growth rates is not well understood. In this study, the growth potentials of algae in terms of Cyanophyta, Chlorophyta, and Bacillariophyta, as well as mixed algae in both regular culture medium and reclaimed water produced from treatment plants in Beijing with similar N and P concentrations, were compared to evaluate whether reclaimed water could facilitate algal growth. In addition, reclaimed water was also sterilized to verify the impact of bacteria's presence on algal growth. The results indicated that most algae grew faster in reclaimed water, among which the growth rate of Microcystis aeruginosa even increased by 5.5 fold. The growth of mixed algae in reclaimed water was not enhanced due to the strong adaptive ability of the community structure. Residual bacteria in the reclaimed water were found to be important contributors to algal growth. This work provided theoretical support for the safe and efficient utilization of reclaimed water.


Subject(s)
Cyanobacteria , Microcystis , Beijing , Water , Eutrophication , Phosphorus/analysis , China
9.
Sci Total Environ ; 915: 169822, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38185154

ABSTRACT

Considering the different fouling characteristics between model foulants and organic components in real reclaimed water, it is of great importance to identify the critical foulants responsible for membrane fouling. This study identified and isolated the fraction with molecular weight (MW) > 100 kDa as the critical foulant in secondary effluent by MW cut-off membrane of 100 kDa with high efficiency. This fraction accounted for 92.2% membrane fouling of raw water, including 28.7%, 29.7% and 33.8% fouling contribution by subfractions with MW between 100-300, 300-500 and > 500 kDa. Specifically, the critical fraction with MW > 100 kDa were mainly distributed in two parts: < 0.22 µm and > 0.45 µm, corresponding to 41.9% and 56.9% fouling contribution of this fraction. Furthermore, both total organic carbon (TOC) and fouling potential of fraction with MW > 100 kDa were monitored, presenting about threefold increase from September to January in next year. Membrane fouling contribution of this critical fraction in raw secondary effluent were mainly distributed in 85∼95% throughout the 5 months, demonstrating its predominant fouling propensity. Moreover, the TOC concentration of fraction with MW > 100 kDa presented distinct positive correlation with the fouling potential of raw secondary effluent (R2 = 0.947), which was promising to be a surrogate for predicting membrane fouling in practical application.

10.
Environ Pollut ; 341: 122937, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37977362

ABSTRACT

Ferrate (Fe(VI)) is an emerging green oxidant which has great potential and prospect in water disinfection. However, the effects of water quality on Fe(VI) disinfection remain unclear. This study systematically investigated the effects of pH, organic matters and inorganic ions on Fe(VI) inactivation of Escherichia coli (E. coli). Results showed that pH was the dominant influencing factor and the inactivation efficiency as well as inactivation rate constant was negatively correlated with pH (6.8-8.4). HFeO4- was found to be the critical Fe(VI) species contributing to the inactivation. As for organic matters (0-5 mg C/L), protein and humic acid significantly accelerated the decay of Fe(VI) and had negative effects on the inactivation efficiency, while polysaccharide slightly inhibited the inactivation due to the low reactivity with Fe(VI). As for inorganic ions, bicarbonate (0-2 mM) could stabilize Fe(VI) and decreased the inactivation rate constant, while ammonium (0-1 mM) had little effect on the inactivation of E. coli. In addition, the comprehensive effects of water quality on Fe(VI) disinfection in actual reclaimed water were also evaluated. The inactivation of E. coli in secondary effluent and denitrifying effluent was found to be inhibited compared to that in phosphate buffer. Overall, this study is believed to provide valuable information on Fe(VI) disinfection for water and wastewater treatment practices.


Subject(s)
Water Pollutants, Chemical , Water Purification , Escherichia coli , Water Quality , Iron/chemistry , Oxidants/chemistry , Water Purification/methods , Oxidation-Reduction , Water Pollutants, Chemical/analysis
11.
Water Res ; 249: 120890, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38016222

ABSTRACT

Emerging electrochemical disinfection techniques provide a promising pathway to the biofouling control of reverse osmosis (RO) process. However, the comparative effectiveness and mechanism of it under flow-through conditions with low voltage remains unclear. This study investigated the effect of a flow-through electrode system (FES) with both direct current (DC) and alternating pulse current (AC) on RO biofouling control compared with chlorine disinfection. At the initial stage of biofouling development, the normalized flux of AC-FES (67% on Day 5) was saliently higher than the control group (56% on Day 5). Subsequently, the normalized fluxes of each group tended similarity in their differences until the 20th day. After mild chemical cleaning, the RO membrane in the AC-FES group reached the highest chemical cleaning efficiency of 58%, implying its foulant was more readily removable and the biofouling was more reversible. The biofouling layer in the DC-FES group was also found to be easily cleanable. Morphological analysis suggested that the thickness and compactness of the fouling layers were the major reasons for the fouling behavior difference. The abundance of 4 fouling-related abundant genera (>1%), which were Pseudomonas, Thiobacillus, Sphingopyxis, and Mycobacterium exhibited a salient correlation with the biofouling degree. The operating cost of FES was also lower than that of chlorine disinfection. In summary, AC-FES is a promising alternative to chlorine disinfection in RO biofouling control, as it caused less and easy-cleaning biofouling layer mainly due to two advantages: a) reducing the regrowth potential after disinfection of the bacteria, leading to alleviated initial fouling, (b) reshaping the microbial community to those with weaker biofilm formation capacity.


Subject(s)
Biofouling , Water Purification , Wastewater , Biofouling/prevention & control , Chlorine , Membranes, Artificial , Osmosis , Water Purification/methods
12.
Front Microbiol ; 14: 1252709, 2023.
Article in English | MEDLINE | ID: mdl-37849920

ABSTRACT

Phytoplasmas are phloem-limited plant pathogens, such as sugarcane white leaf (SCWL) phytoplasma, which are responsible for heavy economic losses to the sugarcane industry. Characterization of phytoplasmas has been limited because they cannot be cultured in vitro. However, with the advent of genome sequencing, different aspects of phytoplasmas are being investigated. In this study, we developed a DNA enrichment method for sugarcane white leaf (SCWL) phytoplasma, evaluated the effect of DNA enrichment via Illumina sequencing technologies, and utilized Illumina and Nanopore sequencing technologies to obtain the complete genome sequence of the "Candidatus Phytoplasma sacchari" isolate SCWL1 that is associated with sugarcane white leaf in China. Illumina sequencing analysis elucidated that only 1.21% of the sequencing reads from total leaf DNA were mapped to the SCWL1 genome, whereas 40.97% of the sequencing reads from the enriched DNA were mapped to the SCWL1 genome. The genome of isolate SCWL1 consists of a 538,951 bp and 2976 bp long circular chromosome and plasmid, respectively. We identified 459 protein-encoding genes, 2 complete 5S-23S-16S rRNA gene operons, 27 tRNA genes, and an incomplete potential mobile unit (PMU) in the circular chromosome. Phylogenetic analyses and average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values based on the sequenced genome revealed that SCWL phytoplasma and sugarcane grassy shoot (SCGS) phytoplasma belonged to the same phytoplasma species. This study provides a genomic DNA enrichment method for phytoplasma sequencing. Moreover, we report the first complete genome of a "Ca. Phytoplasma sacchari" isolate, thus contributing to future studies on the evolutionary relationships and pathogenic mechanisms of "Ca. Phytoplasma sacchari" isolates.

13.
Water Res ; 244: 120531, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37659185

ABSTRACT

With the widespread use of chlorine disinfection, chlorine-resistant bacteria (CRB) in water treatment systems have gained public attention. Bacterial chlorine resistance has been found positively correlated with extracellular polymeric substance (EPS) secretion. In this study, we selected the most suitable CRB controlling method against eight bacterial strains with different chlorine resistance among chloramine, ozone, and ultraviolet (UV) disinfection, analyzed the resistance mechanisms, clarified the contribution of EPS to disinfection resistance, and explored the role of carbon source metabolism capacity. Among all the disinfectants, UV disinfection showed the highest disinfection capacity by achieving the highest average and median log inactivation rates for the tested strains. For Bacillus cereus CR19, the strain with the highest chlorine resistance, 40 mJ/cm2 UV showed a 1.90 log inactivation, which was much higher than that of 2 mg-Cl2/L chlorine (0.67 log), 2 mg-Cl2/L chloramine (1.68 log), and 2 mg/L ozone (0.19 log). Meanwhile, the UV resistance of the bacteria did not correlate with EPS secretion. These characteristics render UV irradiation the best CRB controlling disinfection method. Chloramine was found to have a generally high inactivation efficiency for bacteria with high chlorine-resistance, but a low inactivation efficiency for low chlorine-resistant ones. Although EPS consumed up to 56.7% of chloramine which an intact bacterial cell consumed, EPS secretion could not explain chloramine resistance. Thus, chloramine is an acceptable CRB control method. Similar to chlorine, ozone generally selected high EPS-secreting bacteria, with EPS consuming up to 100% ozone. Therefore, ozone is not an appropriate method for controlling CRB with high EPS secretion. EPS played an important role in all types of disinfection resistance, and can be considered the main mechanism for bacterial chlorine and ozone disinfection resistance. However, as EPS was not the main resistance mechanism in UV and chloramine disinfection, CRB with high EPS secretion were inactivated more effectively. Furthermore, carbon source metabolism was found related to the multiple resistance of bacteria. Those with low carbon source metabolism capacity tended to have higher multiple resistance, especially to chlorine, ozone, and UV light. Distinctively, among the tested gram-negative bacteria, in contrast to other disinfectants, chloramine resistance was negatively correlated with EPS secretion and positively correlated with carbon source metabolism capacity, suggesting a special disinfection mechanism.


Subject(s)
Disinfectants , Ozone , Chlorine/pharmacology , Chloramines/pharmacology , Disinfection , Extracellular Polymeric Substance Matrix , Halogens , Bacteria , Disinfectants/pharmacology , Carbon , Chlorides
14.
Sci Total Environ ; 904: 166297, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37595918

ABSTRACT

With the increasingly serious shortage of water resources globally, it has been paid more attention on how to secure the biosafety of reclaimed water and other non-traditional water sources. However, the 3 most applied disinfection technics, which are chlorine, ultraviolet (UV), and ozone disinfection, all have their disadvantages of selecting undesired bacteria and low energy utilization efficiency. Electrode disinfection is a promising solution, but the current electrode disinfection process still needs to be optimized in terms of the use conditions of the configuration reactivation. In this paper, we built a flow electrode system (FES). To evaluate the disinfection techniques more precisely, we isolated ultraviolet-resistant bacteria (URB) bacteria from the water of the full-scale water plant and tested the disinfection performance of FES and UV. The inactivation rate, reactivation potential, and energy consumption were analyzed. FES could inactivate 99.99 % of the URB and cause irreversible damage to the residual bacteria. FES could make all bacteria strains apoptosis in the subsequent 24 h of storage after alternating pulse current (APC) treatment, 3 V, within 27.7 s. Besides, the energy consumption of FES is about 2 orders lower than that of UV disinfection under the same inactivation rate. In summary, APC-FES is an efficient and low-carbon alternative for future water disinfection, which could achieve the ideal disinfection effect of a high inactivation rate, no reactivation, and low energy consumption.


Subject(s)
Water Purification , Water , Carbon , Bacteria , Disinfection/methods , Water Purification/methods , Chlorine/pharmacology , Electrodes , Ultraviolet Rays
15.
Water Res ; 243: 120373, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37494748

ABSTRACT

The ozone-ultraviolet (UV)-chlorine process is a highly effective method of disinfection in water reuse system, but currently still lacks precise quantification and accurate control. It is difficult to determine the dosage of each disinfectant because of the complex interactions that occur between disinfection units and the complicated mathematical calculation required. In this study, we proposed a dosage optimization model for ozone-UV-chlorine synergistic disinfection process. The model was able to identify the cost-effective doses of the disinfectants under the constraints of microbial inactivation, decolorization, and residual chlorine retention requirements. Specifically, the simulation of microbial inactivation rates during synergistic disinfection process was accomplished through quantification of the synergistic effects between disinfection units and the introduction of enhancement coefficients. In order to solve this optimization model rapidly and automatically, a MATLAB-based software program with graphical user interface was developed. This software consisted of calibration unit, prediction unit, assessment unit, and optimization unit, and was able to simulate synergistic ozone-UV-chlorine process and identify the optimal dose of ozone, UV, and chlorine. Validation experiments revealed good agreements between the experimental data and the results calculated by the developed software. The developed software is believed to help the water reclamation plants improve disinfection efficiency and reduce the operational costs of synergistic disinfection processes.


Subject(s)
Disinfectants , Ozone , Water Purification , Disinfection/methods , Chlorine , Water , Water Purification/methods , Software , Ultraviolet Rays
16.
Nat Commun ; 14(1): 3611, 2023 06 17.
Article in English | MEDLINE | ID: mdl-37330549

ABSTRACT

Follicular helper T (Tfh) cells are essential for germinal center (GC) B cell responses. However, it is not clear which PD-1+CXCR5+Bcl6+CD4+ T cells will differentiate into PD-1hiCXCR5hiBcl6hi GC-Tfh cells and how GC-Tfh cell differentiation is regulated. Here, we report that the sustained Tigit expression in PD-1+CXCR5+CD4+ T cells marks the precursor Tfh (pre-Tfh) to GC-Tfh transition, whereas Tigit-PD-1+CXCR5+CD4+ T cells upregulate IL-7Rα to become CXCR5+CD4+ T memory cells with or without CCR7. We demonstrate that pre-Tfh cells undergo substantial further differentiation at the transcriptome and chromatin accessibility levels to become GC-Tfh cells. The transcription factor c-Maf appears critical in governing the pre-Tfh to GC-Tfh transition, and we identify Plekho1 as a stage-specific downstream factor regulating the GC-Tfh competitive fitness. In summary, our work identifies an important marker and regulatory mechanism of PD-1+CXCR5+CD4+ T cells during their developmental choice between memory T cell fate and GC-Tfh cell differentiation.


Subject(s)
T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer , T-Lymphocytes, Helper-Inducer/metabolism , T Follicular Helper Cells/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Germinal Center , Cell Differentiation , Receptors, CXCR5/genetics , Receptors, CXCR5/metabolism
17.
Quant Imaging Med Surg ; 13(3): 1399-1416, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36915351

ABSTRACT

Background: The cerebellum and cerebral cortex form the most important cortico-cerebellar system in the brain. However, diffusion magnetic resonance imaging (MRI)-based tractography of the connecting white matter between the cerebellum and cerebral cortex, which support language function, has not been extensively reported on. This work aims to serve as a guideline for facilitating the analysis of white matter tracts along the language-related cerebro-cerebellar pathway (LRCCP), which includes the corticopontine, pontocerebellar, corticorubral, rubroolivary, olivocerebellar, and dentatorubrothalamic tracts. Methods: The LRCCP templates were developed via processing the high-resolution, population-averaged atlas available in the Human Connectome Project (HCP)-1065 dataset (2017 Q4, 1,200-subject release) in DSI Studio. The deterministic tracking was performed with the manually selected regions of interest (ROIs) on this atlas according to prior anatomic knowledge. Templates were then applied to the MRI datasets of 30 health participants acquired from a single hospital to verify the practicability of the tracking. The diffusion tensor and shape analysis metrics were calculated for all LRCCP tracts. Differences in the tracking metrics between the left and right hemispheres were compared, and the related white matter asymmetry was discussed. Results: The LRCCP templates were successfully created and applied to healthy participants for quantitative analysis. Significantly higher mean fractional anisotropy (FA) values were discovered on the left (L) corticorubral tract [L, 0.43±0.02 vs. right (R), 0.41±0.02; P<0.01] and left dentatorubrothalamic tract (L, 0.47±0.02 vs. R, 0.46±0.02; P<0.01). Significant differences in tract volume and streamline number were observed between the corticopontine, corticorubral, and dentatorubrothalamic tracts. The size of the right corticopontine and corticorubral tracts were smaller, and both had smaller streamline numbers and innervation areas when compared with the contralateral sides. The R dentatorubrothalamic tract showed a larger volume (R, 23,582.47±4,160.71 mm3 vs. L, 19,821.27±2,983.91 mm3; P<0.01) and innervation area (R, 2,117.37±433.98 mm2 vs. L, 1,610.00±356.19 mm2; P<0.01) than did the L side. No significant differences were observed in the rubroolivary tracts. Conclusions: This work suggests the feasibility of applying tractography templates of the LRCCP to quantitatively evaluate white matter properties associated with language function. Lateralized diffusion metrics were observed in preliminary experiments. LRCCP tractography-based research may provide a potential quantitative method to better understanding neuroplasticity.

18.
Elife ; 122023 02 21.
Article in English | MEDLINE | ID: mdl-36803766

ABSTRACT

The essential role of store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels in T cells is well established. In contrast, the contribution of individual Orai isoforms to SOCE and their downstream signaling functions in B cells are poorly understood. Here, we demonstrate changes in the expression of Orai isoforms in response to B cell activation. We show that both Orai3 and Orai1 mediate native CRAC channels in B cells. The combined loss of Orai1 and Orai3, but not Orai3 alone, impairs SOCE, proliferation and survival, nuclear factor of activated T cells (NFAT) activation, mitochondrial respiration, glycolysis, and the metabolic reprogramming of primary B cells in response to antigenic stimulation. Nevertheless, the combined deletion of Orai1 and Orai3 in B cells did not compromise humoral immunity to influenza A virus infection in mice, suggesting that other in vivo co-stimulatory signals can overcome the requirement of BCR-mediated CRAC channel function in B cells. Our results shed important new light on the physiological roles of Orai1 and Orai3 proteins in SOCE and the effector functions of B lymphocytes.


Subject(s)
B-Lymphocytes , Calcium Channels , ORAI1 Protein , Animals , Mice , B-Lymphocytes/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
19.
Environ Int ; 173: 107818, 2023 03.
Article in English | MEDLINE | ID: mdl-36812804

ABSTRACT

In regard to membrane-based technologies of wastewater reclamation, the reported key foulants were faced with dilemma that they could not be effectively separated and extracted from reclaimed water for thorough investigation. In this study, the crucial foulants were proposed as "critical minority fraction (FCM)", representing the fraction with molecular weight (MW) > 100 kDa which could be easily separated by physical filtration using MW cut-off membrane of 100 kDa with fairly high recovery ratio. FCM with low dissolved organic carbon (DOC) concentration (∼1 mg/L) accounted for less than 20% of the total DOC in reclaimed water, while contributed to more than 90% of the membrane fouling, and thus FCM could be considered as a "perfect criminal" causing membrane fouling. Furthermore, pivotal fouling mechanism was attributed to the significant attractive force between FCM and membranes, which led to severe fouling development due to the aggregation of FCM on membrane surface. Fluorescent chromophores of FCM were concentrated in regions of proteins and soluble microbial products, with proteins and polysaccharides accounted for 45.2% and 25.1% of the total DOC, specifically. FCM was further fractionated into six fractions, among which hydrophobic acids and hydrophobic neutrals were the dominant components in terms of DOC content (∼80%) as well as fouling contribution. Regarding to these pronounced properties of FCM, targeted fouling control strategies including ozonation and coagulation were applied and proved to achieve remarkable fouling control effect. High-performance size-exclusion chromatography results suggested that ozonation achieved distinct transformation of FCM into low MW fractions, while coagulation removed FCM directly, thus leading to effective fouling alleviation. Therefore, the investigation of the critical foulants was expected to help glean valuable insight into the fouling mechanism and develop targeted fouling control technologies in practical applications.


Subject(s)
Ozone , Water Purification , Ultrafiltration , Water , Membranes, Artificial , Water Purification/methods , Dissolved Organic Matter , Ozone/chemistry
20.
Environ Microbiol ; 25(3): 675-688, 2023 03.
Article in English | MEDLINE | ID: mdl-36527381

ABSTRACT

Microbial ammonia oxidation is vital to the nitrogen cycle. A biological process, called Dirammox (direct ammonia oxidation, NH3 →NH2 OH→N2 ), has been recently identified in Alcaligenes ammonioxydans and Alcaligenes faecalis. However, its transcriptional regulatory mechanism has not yet been fully elucidated. The present study characterized a new MocR-like transcription factor DnfR that is involved in the Dirammox process in A. faecalis strain JQ135. The entire dnf cluster was composed of 10 genes and transcribed as five transcriptional units, that is, dnfIH, dnfR, dnfG, dnfABCDE and dnfF. DnfR activates the transcription of dnfIH, dnfG and dnfABCDE genes, and represses its own transcription. The intact 1506-bp dnfR gene was required for activation of Dirammox. Electrophoretic mobility shift assays and DNase I footprinting analyses showed that DnfR has one binding site in the dnfH-dnfR intergenic region and two binding sites in the dnfG-dnfA intergenic region. Three binding sites of DnfR shared a 6-bp repeated conserved sequence 5'-GGTCTG-N17 -GGTCTG-3' which was essential for the transcription of downstream target genes. Cysteine and glutamate act as possible effectors of DnfR to activate the transcription of transcriptional units of dnfG and dnfABCDE, respectively. This study provided new insights in the transcriptional regulation mechanism of Dirammox by DnfR in A. faecalis JQ135.


Subject(s)
Alcaligenes faecalis , Alcaligenes faecalis/chemistry , Alcaligenes faecalis/genetics , Alcaligenes faecalis/metabolism , Ammonia/metabolism , Binding Sites , Transcription Factors/genetics , Transcription, Genetic , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...