Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-17714

ABSTRACT

Paget's disease of bone (PDB) is a common metabolic bone disease that is characterized by aberrant focal bone remodeling, which is caused by excessive osteoclastic bone resorption followed by disorganized osteoblastic bone formation. Genetic factors are a critical determinant of PDB pathogenesis, and several susceptibility genes and loci have been reported, including SQSTM1, TNFSF11A, TNFRSF11B, VCP, OPTN, CSF1 and DCSTAMP. Herein, we report a case of Chinese familial PDB without mutations in known genes and identify a novel c.163G>C (p.Val55Leu) mutation in FKBP5 (encodes FK506-binding protein 51, FKBP51) associated with PDB using whole-exome sequencing. Mutant FKBP51 enhanced the Akt phosphorylation and kinase activity in cells. A study of osteoclast function using FKBP51V55L KI transgenic mice proved that osteoclast precursors from FKBP51V55L mice were hyperresponsive to RANKL, and osteoclasts derived from FKBP51V55L mice displayed more intensive bone resorbing activity than did FKBP51WT controls. The osteoclast-specific molecules tartrate-resistant acid phosphatase, osteoclast-associated receptor and transcription factor NFATC1 were increased in bone marrow-derived monocyte/macrophage cells (BMMs) from FKBP51V55L mice during osteoclast differentiation. However, c-fos expression showed no significant difference in the wild-type and mutant groups. Akt phosphorylation in FKBP51V55L BMMs was elevated in response to RANKL. In contrast, IκB degradation, ERK phosphorylation and LC3II expression showed no difference in wild-type and mutant BMMs. Micro-CT analysis revealed an intensive trabecular bone resorption pattern in FKBP51V55L mice, and suspicious osteolytic bone lesions were noted in three-dimensional reconstruction of distal femurs from mutant mice. These results demonstrate that the mutant FKBP51V55L promotes osteoclastogenesis and function, which could subsequently participate in PDB development.


Subject(s)
Animals , Humans , Mice , Acid Phosphatase , Asian People , Bone Diseases, Metabolic , Bone Remodeling , Bone Resorption , Femur , Mice, Transgenic , Osteitis Deformans , Osteoblasts , Osteoclasts , Osteogenesis , Phosphorylation , Phosphotransferases , Tacrolimus Binding Proteins , Transcription Factors
2.
Pest Manag Sci ; 59(12): 1355-9, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14667058

ABSTRACT

A field population of brown planthoppers (Nilaparvata lugens Stål) was collected and selected for imidacloprid resistance in the laboratory. The resistance increased by 11.35 times in 25 generations and the resistance ratio reached 72.83 compared with a laboratory susceptible strain. The selected resistant strain showed obvious cross-resistance to all the acetylcholine receptor targeting insecticides tested (monosultap 1.44-fold, acetamiprid 1.61-fold, imidacloprid homologues JS599 2.46-fold and JS598 3.17-fold), but not to others. Further study demonstrated that TPP and DEM had no synergism on imidacloprid. However, PBO displayed significant synergism in some different strains, and the synergism increased with resistance (S strain 1.20, field population 1.43 and R strain 2.93). PBO synergism to cross-resistant insecticides was also found in the resistant strain (monosultap 1.25, acetamiprid 1.39, JS598 1.94 and JS599 2.02). We concluded that esterase and glutathione S-transferase play little role in imidacloprid detoxification. The increase of the P450-monooxygenases detoxification is an important mechanism for imidacloprid resistance and target resistance may also exist in this species.


Subject(s)
Hemiptera/drug effects , Imidazoles/toxicity , Insecticides/toxicity , Plants , Animals , Biological Assay , Drug Synergism , Female , Hemiptera/growth & development , Hemiptera/metabolism , Imidazoles/metabolism , Insecticide Resistance , Insecticides/metabolism , Lethal Dose 50 , Neonicotinoids , Nitro Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...