Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 408(20): 4475-81, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20673962

ABSTRACT

The ever expanding use of engineered nanoscaled materials has brought about a commensurate growth in concern about their potential risks to human and environmental health. Toxicity of nanoparticles could vary with their physicochemical parameters. The dependence of cytotoxicity on particle size and surface coating of iron oxide nanoparticles was investigated in this in vitro study using the A3 human T lymphocyte as a model. Two different sizes (10 nm and 50 nm) and two different surface coatings (amine and carboxyl groups) of iron oxide (IO) nanoparticles were tested with fluorescein diacetate (FDA) assay and WST-1 assay. In the 1-h FDA assay with PBS, IO nanoparticles did not show size-dependent toxicity to A3 cells in terms of mass concentration; however, in terms of the number of particles per well and the total surface area, they did exhibit size-dependent toxicity. Fifty nanometer IO nanoparticles are more toxic than the 10 nm counterparts. The results of both the 24-h FDA and WST-1 assays in a complete growth medium indicate size- and surface coating-dependent toxicity to A3 cells in terms of mass concentration. IO nanoparticles of the smaller size are more toxic than those of the larger size. IO nanoparticles with the carboxyl group have a higher toxicity than those with the amine group. However, in the 24-h FDA assay, in terms of the number of particles per well and the resultant total surface area per well, the 50 nm IO nanoparticles are more toxic than those of size 10 nm. In terms of mass concentration, the number of particles per well and the total surface area, both of the 24-h assays showed the consistent results that IO nanoparticles with the carboxyl group have a higher toxicity than those with the amine group.


Subject(s)
Ferric Compounds/toxicity , Metal Nanoparticles/toxicity , T-Lymphocytes/drug effects , Cells, Cultured , Ferric Compounds/chemistry , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Particle Size , Toxicity Tests
2.
Analyst ; 133(9): 1209-13, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18709196

ABSTRACT

A unique multilabeling at a single-site protocol of the Ru(bpy)(3)(2+) electrochemiluminescence (ECL) system is proposed. Nanoparticles (NPs) were used as assembly substrates to enrich ECL co-reactants of Ru(bpy)(3)(2+) to construct nanoscale-enhanced ECL labels. Two different kinds of NP substrates [including semiconductor NPs (CdTe) and noble metal NPs (gold)] capped with 2-(dimethylamino)ethanethiol (DMAET) [a tertiary amine derivative which is believed to be one of the most efficient of co-reactants of the Ru(bpy)(3)(2+) system] were synthesized through a simple one-pot synthesis method in aqueous media. Although both CdTe and gold NPs realized the enrichment of ECL co-reactants, they presented entirely different ECL performances as nanoscale ECL co-reactants of Ru(bpy)(3)(2+). The different effects of these two NPs on the ECL of Ru(bpy)(3)(2+) were studied. DMAET-capped CdTe NPs showed enormous signal amplification of Ru(bpy)(3)(2+) ECL, whereas DMAET-capped gold NPs showed a slight quenching effect of the ECL signal. DMAET-capped CdTe NPs can be considered to be excellent nanoscale ECL labels of the Ru(bpy)(3)(2+) system, as even a NP solution sample of 10(-18) M was still detectable after an electrostatic self-assembly concentration process. DMAET-capped CdTe NPs were further applied in the construction of aptamer-based biosensing system for proteins and encouraging results were obtained.


Subject(s)
Biosensing Techniques/methods , Ruthenium , Aptamers, Peptide , Biosensing Techniques/instrumentation , Electrochemistry/instrumentation , Electrochemistry/methods , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Nanoparticles
3.
PLoS One ; 3(5): e2222, 2008 May 21.
Article in English | MEDLINE | ID: mdl-18493618

ABSTRACT

Here we present a facile one-pot method to prepare high-quality CdTe nanocrystals in aqueous phase. In contrast to the use of oxygen-sensitive NaHTe or H(2)Te as Te source in the current synthetic methods, we employ more stable sodium tellurite as the Te source for preparing highly luminescent CdTe nanocrystals in aqueous solution. By selecting mercaptosuccinic acid (MSA) as capping agent and providing the borate-citrate acid buffering solution, CdTe nanocrystals with high quantum yield (QY >70% at pH range 5.0-8.0) can be conveniently prepared by this method. The influence of parameters such as the pH value of the precursor solution and the molar ratio of Cd(2+) to Na(2)TeO(3) on the QY of CdTe nanocrystals was systematically investigated in our experiments. Under optimal conditions, the QY of CdTe nanocrystals is even high up to 83%. The biological application of luminescent MSA-CdTe to HEK 293 cell imaging was also illustrated.


Subject(s)
Cadmium Compounds/chemistry , Nanostructures , Tellurium/chemistry , Thiomalates/chemistry , Buffers , Hydrogen-Ion Concentration , Luminescence
4.
J Colloid Interface Sci ; 306(2): 307-15, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17140593

ABSTRACT

Novel silver-gold bimetallic nanostructures were prepared by seeding with silver nanoplates in the absence of any surfactants. During the synthesis process, it was found that the frameworks of silver nanoplates were normally kept though the basal plane of silver nanoplates became rugged. The real morphology of these nanostructures depended on the molar ratio of gold ions to the seed particles. When the molar ratio of gold ions to silver atoms increased from 0.5 to 4, porous or branched silver-gold bimetallic nanostructures could be made. The growth mechanism was qualitatively discussed based on template-engaged replacement reactions and seed-mediated deposition reactions. Due to the unusual structures, they exhibited interesting optical properties. Moreover, they were shown to be an active substrate for surface-enhanced Raman scattering measurements.

5.
Nanotechnology ; 17(18): 4758-64, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-21727609

ABSTRACT

We report an easy synthesis of highly branched gold particles through a seed-mediated growth approach in the presence of citrate. The addition of citrate in the growth solution is found to be crucial for the formation of these branched gold particles. Their size can be varied from 47 to 185 nm. The length of the thumb-like branch is estimated to be between about 5 and 20 nm, and changes slightly as the particle size increases. Owing to these obtuse and short branches, their surface plasmon resonance displays a marked red-shift with respect to the normal spherical particles. These branched gold particles exhibit stronger SERS activity than the non-branched ones, which is most likely related to these unique branching features.

SELECTION OF CITATIONS
SEARCH DETAIL
...