Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(27): 17996-18010, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38924447

ABSTRACT

The low initial Coulombic efficiency (ICE) greatly hinders the practical application of MXenes in sodium-ion batteries. Herein, theoretical calculations confirm that -F and -OH terminations as well as the tetramethylammonium ion (TMA+) intercalator in sediment Ti3C2Tx (s-Ti3C2Tx) MXene possess strong interaction with Na+, which impedes Na+ desorption during the charging process and results in low ICE. Consequently, Na+-intercalated sediment Ti3C2Tx (Na-s-Ti3C2Tx) is constructed through Na2S·9H2O treatment of s-Ti3C2Tx. Specifically, Na+ can first exchange with TMA+ of s-Ti3C2Tx and then combine with -F and -OH terminations, thus leading to the elimination of TMA+ and preshielding of -F and -OH. As expected, the resulting Na-s-Ti3C2Tx anode delivers considerably boosted ICE values of around 71% in carbonate-based electrolytes relative to s-Ti3C2Tx. Furthermore, electrolyte optimization is employed to improve ICE, and the results demonstrate that an ultrahigh ICE value of 94.0% is obtained for Na-s-Ti3C2Tx in the NaPF6-diglyme electrolyte. More importantly, Na-s-Ti3C2Tx exhibits a lower Na+ migration barrier and higher electronic conductivity compared with s-Ti3C2Tx based on theoretical calculations. In addition, the cyclic stability and rate performance of the Na-s-Ti3C2Tx anode in various electrolytes are comprehensively explored. The presented simple strategy in boosting ICE significantly enhances the commercialization prospect of MXenes in advanced batteries.

2.
Small ; 20(27): e2307784, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38279620

ABSTRACT

Transition metal nitrides (TMNs) are affirmed to be an appealing candidate for boosting the performance of lithium-sulfur (Li-S) batteries due to their excellent conductivity, strong interaction with sulfur species, and the effective catalytic ability for conversion of polysulfides. However, the traditional bulk TMNs are difficult to achieve large active surface area and fast transport channels for electrons/ions simultaneously. Here, a 2D ultrathin geometry of titanium nitride (TiN) is realized by a facile topochemical conversion strategy, which can not only serve as an interconnected conductive platform but also expose abundant catalytic active sites. The ultrathin TiN nanosheets are coated on a commercial separator, serving as a multifunctional interlayer in Li-S batteries for hindering the polysulfide shuttle effect by strong capture and fast conversion of polysulfides, achieving a high initial capacity of 1357 mAh g-1 at 0.1 C and demonstrating a low capacity decay of only 0.046% per cycle over 1000 cycles at 1 C.

3.
ACS Appl Mater Interfaces ; 15(41): 48316-48325, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37793088

ABSTRACT

Zn metal has been extensively utilized as an anode in aqueous zinc-ion batteries attributed to its affordable cost and superior theoretical capacity. Nevertheless, the presence of dendrites and undesirable side reactions poses challenges to its widespread commercialization. To address these issues, herein, a surface coating composed of hydroxyapatite (HAP) was developed on the Zn anode to create an artificial solid electrolyte interphase. After the application of a hydroxyapatite layer, dendrites and corrosion of the Zn anode are sufficiently inhibited. Furthermore, the hydroxyapatite interphase with a low ionic diffusion barrier enables fast anodic redox kinetics. Consequently, the Zn@HAP symmetric cell possesses a durable lifespan over 2000 h at 1 mA cm-2, while maintaining minimal polarization. Moreover, the practical feasibilities of the Zn@HAP anode are also manifested in full batteries combined with MnO2 cathodes, exhibiting exceptional cycling performance up to 500 cycles at 1 A g-1 and excellent rate capability with a retention of 109 mAh g-1 at 5 A g-1.

4.
Nanomicro Lett ; 14(1): 180, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048339

ABSTRACT

Aqueous rechargeable zinc ion batteries are regarded as a competitive alternative to lithium-ion batteries because of their distinct advantages of high security, high energy density, low cost, and environmental friendliness. However, deep-seated problems including Zn dendrite and adverse side reactions severely impede the practical application. In this work, we proposed a freestanding Zn-electrolyte interfacial layer composed of multicapsular carbon fibers (MCFs) to regulate the plating/stripping behavior of Zn anodes. The versatile MCFs protective layer can uniformize the electric field and Zn2+ flux, meanwhile, reduce the deposition overpotentials, leading to high-quality and rapid Zn deposition kinetics. Furthermore, the bottom-up and uniform deposition of Zn on the Zn-MCFs interface endows long-term and high-capacity plating. Accordingly, the Zn@MCFs symmetric batteries can keep working up to 1500 h with 5 mAh cm-2. The feasibility of the MCFs interfacial layer is also convinced in Zn@MCFs||MnO2 batteries. Remarkably, the Zn@MCFs||α-MnO2 batteries deliver a high specific capacity of 236.1 mAh g-1 at 1 A g-1 with excellent stability, and maintain an exhilarating energy density of 154.3 Wh kg-1 at 33% depth of discharge in pouch batteries.

5.
ACS Appl Mater Interfaces ; 14(31): 35769-35779, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35905442

ABSTRACT

Alloying-type anodes including Si- and Sn-based materials are considered the most exploitable anodes for high-performance lithium-ion batteries. However, problems of poor kinetics properties and structural failures such as grain pulverization and coarsening hinder their large-scale application. Herein, SnO2/Si@graphite hybrid anodes, with nano-SnO2 and nano-Si thoroughly mixed with each other and loaded onto graphite flakes, have been prepared by a facile ball milling method. Attributed to the "synergistic effect" between SnO2 and Si, the mechanical stability and kinetics properties can be remarkably enhanced. Furthermore, graphite substrate supplies a fast electrically conductive path and buffers the volume expansion of active particles. Accordingly, SnO2/Si@graphite delivers 798.9 mAh g-1 at 200 mA g-1 and maintains 550.8 mAh g-1 after 1000 cycles at 1 A g-1 in half cells. Impressively, a high energy density of 431.4 Wh kg-1 (based on the mass of anode and cathode) can be obtained in full cells when paired with the NCM622 cathode. This work presents an effective strategy to exploit high-performance alloying-type anodes for LIBs by designing hybrid materials with multiple active components.

6.
Materials (Basel) ; 14(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672033

ABSTRACT

Silicon is investigated as one of the most prospective anode materials for next generation lithium ion batteries due to its superior theoretical capacity (3580 mAh g-1), but its commercial application is hindered by its inferior dynamic property and poor cyclic performance. Herein, we presented a facile method for preparing silicon/tin@graphite-amorphous carbon (Si/Sn@G-C) composite through hydrolyzing of SnCl2 on etched Fe-Si alloys, followed by ball milling mixture and carbon pyrolysis reduction processes. Structural characterization indicates that the nano-Sn decorated porous Si particles are coated by graphite and amorphous carbon. The addition of nano-Sn and carbonaceous materials can effectively improve the dynamic performance and the structure stability of the composite. As a result, it exhibits an initial columbic efficiency of 79% and a stable specific capacity of 825.5 mAh g-1 after 300 cycles at a current density of 1 A g-1. Besides, the Si/Sn@G-C composite exerts enhanced rate performance with 445 mAh g-1 retention at 5 A g-1. This work provides an approach to improve the electrochemical performance of Si anode materials through reasonable compositing with elements from the same family.

7.
ACS Appl Mater Interfaces ; 12(50): 55820-55829, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33284592

ABSTRACT

The grain aggregation engendered kinetics failure is regarded as the main reason for the electrochemical decay of nanosized anode materials. Herein, we proposed a dual immobilization strategy to suppress the migration and aggregation of SnOx nanoparticles and corresponding lithiation products through constructing SnOx/TiO2@PC composites. The N-doped carbon could anchor the tin oxide particles and inhibit their aggregation during the preparation process, leading to a uniform distribution of ultrafine SnOx nanoparticles in the matrix. Meanwhile, the incorporated TiO2 component works as parclose to suppress the migration and coarsening of SnOx and corresponding lithiation products. In addition, the N-doped carbon and TiO2/LixTiO2 can significantly improve the electrical and ionic conductivities of the composites, enabling a good diffusion and charge-transfer dynamics. Owing to the dual immobilization from the "synergistic effect" of N-doped carbon and the "parclose effect" of TiO2, the conversion reaction of SnOx remains fully reversible throughout the cycling. Thereby, the composites exhibit excellent cycling performance in half cells and can be fully utilized in full cells. This work may provide an inspiration for the rational design of tin-based anodes for high-performance lithium-ion batteries.

8.
ACS Nano ; 14(12): 17665-17674, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33301296

ABSTRACT

MXenes have been widely explored in energy storage because of their extraordinary properties; however, the majority of research on their application was staged at multilayered MXenes or assisted by carbon materials. Scientifically speaking, the two most distinctive properties of MXenes are usually neglected, composed of large interlayer spacing and abundant surface chemistry, which distinguish MXenes from other two-dimensional materials. Herein, few-layered MXene (f-MXene) nanosheet powders can be easily prepared according to the modified solution-phase flocculation method, completely avoiding the restacking phenomenon of f-MXene nanosheets in preparation and oxidation issues during the storage process. Via further employing the solvothermal reaction and annealing treatment, we successfully constructed pillared SnS/Ti3C2Tx composites decorated with in situ formed TiO2 nanoparticles. In the composites, MXenes can play the role of a conductive network, a buffer matrix for volume expansion of SnS, while the active SnS nanoplates can fully deliver the advantage of high capacity and further induce interlayer engineering of Ti3C2Tx during cycling. As a result, the pillared SnS/Ti3C2Tx MXene composites exhibit obvious improvement in electrochemical performance. Interestingly, there is an apparent enhancement of capacity at succedent cycling, which can be ascribed to the "pillar effect" of Ti3C2Tx MXenes. The efforts and attempts made in this work can further broaden the development of pillared MXene composites.

9.
ACS Appl Mater Interfaces ; 12(37): 41323-41332, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32830944

ABSTRACT

All-solid-state lithium batteries (ASSLBs) have been paid increasing attention because of the better security compared with conventional lithium-ion batteries with flammable organic electrolytes. However, the poor ion transport between the cathode materials greatly hinders the capacity performance of ASSLBs. Herein, an electron/ion dual-conductive electrode framework is proposed for superior performance ASSLBs. Highly electronic conductive reduced graphene oxide and carbon nanotubes interconnect with active materials in the cathodes, constructing a three-dimensional continuous electron transport network. The composite electrolyte penetrates into the porous structure of the electrode, forming a consecutive ionic conductive framework. Furthermore, the thin electrolyte film formed on the surface of the cathode effectively lowers the interfacial resistance with the electrolyte membrane. Highly electron/ion conductive electrodes, combined with the polyethylene oxide-Li6.4La3Zr1.4Ta0.6O12 (PEO-LLZTO) composite electrolyte, show excellent capacity performance for both LiFePO4 and sulfur (lithium-sulfur battery) active materials. In addition, the LiFePO4 cathode demonstrates superior capacity performance and rate capability at room temperature. Furthermore, the relationship between the low Coulombic efficiency and Li dendrite growth has been revealed in this work. An effective layer is formed on the surface of Li metal by the simple modification of cupric fluoride (CuF2), which can stabilize the electrolyte/anode interface. Finally, high-performance ASSLBs with high Coulombic efficiency can be achieved.

10.
Chem Asian J ; 15(14): 2153-2159, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32452154

ABSTRACT

The typical preparation route of carbon-supported metallic catalyst is complex and uneconomical. Herein, we reported a thiol-assisted one-pot method by using 3-mercaptopropionic acid (MPA) to synthesize carbon-supported metal nanoparticles catalysts for efficient electrocatalytic reduction of carbon dioxide (CO2 RR). We found that the synthesized Au-MPA/C catalyst achieves a maximum CO faradaic efficiency (FE) of 96.2% with its partial current density of -11.4 mA/cm2 , which is much higher than that over Au foil or MPA-free carbon-supported Au (Au/C). The performance improvement in CO2 RR over the catalyst is probably derived from the good dispersion of Au nanoparticles and the surface modification of the catalyst caused by the specific interaction between Au nanoparticles and MPA. This thiol-assisted method can be also extended to synthesize Ag-MPA/C with enhanced CO2 RR performance.

11.
ACS Appl Mater Interfaces ; 12(7): 8240-8248, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32031363

ABSTRACT

Anodes made of molybdenum trioxide (MoO3) suffer from insufficient conductivity and low catalytic reactivity. Here, we demonstrate that by using a dealloying method, we were able to fabricate anode of Ti-doped MoO3 (Ti-MoO3), which exhibits high catalytic reactivity, along with enhanced rate performance and cycling stability. We found that after doping, interestingly, the Ti-MoO3 forms nanosheets and assembles into a micrometer-sized flowerlike morphology with enhanced interlayer distance. The density functional theory result has further concluded that the band gap of the Ti-doped anode has been reduced significantly, thus greatly enhancing the electronic conductivity. As a result, the structure maintains stability during the Li+ intercalation/deintercalation processes, which enhances the cycling stability and rate capability. This engineering strategy and one-step synthesis route opens up a new pathway in the design of anode materials.

12.
Nanomicro Lett ; 12(1): 78, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-34138291

ABSTRACT

MXenes have attracted great interest in various fields, and pillared MXenes open a new path with larger interlayer spacing. However, the further study of pillared MXenes is blocked at multilayered state due to serious restacking phenomenon of few-layered MXene nanosheets. In this work, for the first time, we designed a facile NH4+ method to fundamentally solve the restacking issues of MXene nanosheets and succeeded in achieving pillared few-layered MXene. Sn nanocomplex pillared few-layered Ti3C2Tx (STCT) composites were synthesized by introducing atomic Sn nanocomplex into interlayer of pillared few-layered Ti3C2Tx MXenes via pillaring technique. The MXene matrix can inhibit Sn nanocomplex particles agglomeration and serve as conductive network. Meanwhile, the Sn nanocomplex particles can further open the interlayer spacing of Ti3C2Tx during lithiation/delithiation processes and therefore generate extra capacity. Benefiting from the "pillar effect," the STCT composites can maintain 1016 mAh g-1 after 1200 cycles at 2000 mA g-1 and deliver a stable capacity of 680 mAh g-1 at 5 A g-1, showing one of the best performances among MXene-based composites. This work will provide a new way for the development of pillared MXenes and their energy storage due to significant breakthrough from multilayered state to few-layered one.

13.
ChemSusChem ; 13(4): 819-826, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31829524

ABSTRACT

Fast lithium-ion diffusion is very important to obtain high capacity and excellent cycling stability of lithium-sulfur batteries. In this study, a copolymer micelle crosslinked binder (FNA) for lithium-sulfur batteries was successfully synthesized through a one-pot environmentally friendly approach. The micelles were used as crosslinkers and carriers for the electrolyte. The FNA binder provided multiple lithium-ion diffusion pathways to increase the lithium-ion diffusion, which reduced the polarization of the sulfur cathode during the cycling process. The lithium-ion diffusion pathways of the FNA were provided by the electrolyte hosted in the micelles, the polyethylene oxide and polypropylene oxide segments, and the carboxylate and sulfonate groups in the FNA. In addition, FNA possesses strong lithium polysulfides adsorption and high adhesion properties. Therefore, the electrode with the FNA binder presented a reversible capacity of 571 mAh g-1 with a capacity fade of 0.032 % after 1000 cycles at a cycling rate of 0.5 C, which is much higher than those of the polyvinylidene fluoride (PVDF) sulfur cathode.

14.
ACS Appl Mater Interfaces ; 11(45): 42086-42093, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31637912

ABSTRACT

MXenes, synthesized from MAX, have emerged as new energy-storage materials for a good combination of metallic conductivity and rich surface chemistry. The reported MXenes are synthesized mostly from Al-based MAX. It is still a big challenge to synthesize MXenes from abundant Si-based MAX because of its strong Ti-Si bonds. Here, we report for the first time a high-energy ultrasonic cell-crushing extraction method to successfully prepare Ti3C2Tx MXenes from Si-based MAX using a single low-concentration etchant. This novel strategy for preparing MXenes has a high extraction efficiency and is a fast preparation process of less than 2 h for selective etching of Si. Furthermore, through the high-energy ball-milling technology, unique P-O-Ti bonded red phosphorus nanodot/Ti3C2Tx (PTCT) composites were successfully prepared, which enable superior electrochemical performance in lithium- and sodium-ion batteries because of the double-morphology structure, where the amorphous nano red phosphorus particles were strongly absorbed to Ti3C2Tx MXene sheets, facilitating the transport of alkali ions during cycling processes. This novel synthesis method of Ti3C2Tx MXenes from Si-based MAX and unique P-O-Ti bonded PTCT composites opens a new door for preparing high-performance MXene-based materials and facilitating the development of low-cost MXenes and other two-dimensional materials for next-generation energy storage.

15.
J Phys Chem Lett ; 10(21): 6446-6454, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31589051

ABSTRACT

MXenes have great application prospect in energy storage fields due to a series of special physicochemical properties. However, the application of MXenes is greatly limited due to low intrinsic capacity. Here, through spray drying and vapor deposition methods, N-doped Ti3C2Tx and phosphorus composites (N-Ti3C2Tx/P) were prepared for the first time. The red phosphorus particles were absorbed to a walnut-like N-Ti3C2Tx matrix, facilitating the transport of Li+ and electrons. When used as anodes for lithium-ion batteries, the battery can cycle up to 1040 cycles with a high stable capacity of 801 mAh/g at 500 mA/g. Impressively, there is an obvious increase of capacity in the subsequent cycles at higher current density due to the increment of interlayer spacing of Ti3C2Tx nanosheets. XPS measurements confirm that the Ti-O-P bond was formed in the composites, granting the robust structure of the composites and leading to superior performances during cycling. The facile synthesis method of red phosphorus by vapor deposition will facilitate the development of other 2D materials combined with high-capacity red phosphorus for energy storage.

16.
ChemSusChem ; 12(21): 4838-4845, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31452350

ABSTRACT

An amorphous cross-linked binder is prepared from abundant and low-cost sodium alginate and carboxymethyl cellulose by protonation and mixing and is used to improve the electrochemical performance of silicon anodes in lithium-ion batteries. The amorphous cross-linked structure, formed by intermolecular hydrogen bonding between the functional groups in the two polymers, effectively enhances the flexibility and strength of the binder, resulting in strong adhesion between the binder and other components in the silicon anodes. Furthermore, the binder tolerates large volume changes and reduces the pulverization of silicon during the charge-discharge process. The hydrogen bonding in the binder helps to maintain the anode integrity during the volume change, leading to an excellent cycling stability and superior rate capability with a capacity of 1863 mAh g-1 at 500 mA g-1 after 150 cycles.

17.
J Phys Chem Lett ; 10(10): 2561-2566, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31050438

ABSTRACT

Benefiting from the nanoscale effect, some metastable compounds can be synthesized in nanoparticles under normal conditions. The new intermetallic NiSn5 phase is synthesized by us for the first time by using a seed crystal induction method. This tetragonal phase in the P4/ mcc space group has stoichiometric Ni atom defects, yielding Ni0.62Sn5. A study of the growth mechanism reveals that the FeSn5/CoSn5 seed crystal plays a vital role in the formation of the NiSn5 phase. An investigation of the phase evolution during lithiation/delithiation processes indicates the irreversibility of NiSn5 as an anode for lithium ion batteries.

18.
ACS Appl Mater Interfaces ; 11(15): 14051-14058, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30901188

ABSTRACT

In this work, a new effective and low-cost binder applied in porous silicon anode is designed through blending of low-cost poly(acrylic acid) (PAA) and poly(ethylene- co-vinyl acetate) (EVA) latex (PAA/EVA) to avoid pulverization of electrodes and loss of electronic contact because of huge volume changes during repeated charge/discharge cycles. PAA with a large number of carboxyl groups offers strong binding strength among porous silicon particles. EVA with high elastic property enhances the ductility of the PAA/EVA binder. The high-ductility PAA/EVA binder tolerates the huge silicon volume variations and keeps the electrode integrity during the charge/discharge cycle process. EVA colloids acting as host materials for electrolytes increase the electrolyte uptake of electrodes. The porous silicon electrode with the PAA/EVA binder exhibits a reversible capacity of 2120 mA h g-1 at 500 mA g-1 after 140 cycles because of the excellent ductility and lithium-ion transport properties of the PAA/EVA binder.

19.
Chem Commun (Camb) ; 54(87): 12337-12340, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30324203

ABSTRACT

An activated carbon cloth/polymer-iodine (ACC/PVP-I2) composite was prepared by the "Betadine" method and employed as a high-performance cathode for rechargeable Li/I2 batteries. Due to the synergistic effect of ACC and PVP-I2, Li/I2 cells with ACC/PVP-I2 as the cathode exhibited superior electrochemical performance.

20.
ACS Appl Mater Interfaces ; 10(21): 17933-17941, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29738665

ABSTRACT

Rechargeable lithium/iodine (Li/I2) batteries have attracted much attention because of their high gravimetric/volumetric energy densities, natural abundance and low cost. However, problems of the system, such as highly unstable iodine species under high temperature, their subsequent dissolution in electrolyte and continually reacting with lithium anode prevent the practical use of rechargeable Li/I2 cells. A polymer-iodine composite (polyvinylpyrrolidone-iodine) with high thermostability is employed as cathode material in rechargeable Li/I2 battery with an organic electrolyte. Because of the chemical interaction between polyvinylpyrrolidone (PVP) and polyiodide, most of the polyiodide in the cathode could be effectively trapped during charging/discharging. In-situ Raman observation revealed the evolution of iodine species in this system could be controlled during the process of I5- ↔ I3- ↔ I-. Herein, the Li/I2 battery delivered a high discharge capacity of 278 mAh g-1 at 0.2 C and exhibited a very low capacity decay rate of 0.019% per cycle for prolonged 1100 charge/discharge cycles at 2 C. More importantly, a high areal capacity of 4.1 mAh cm-2 was achieved for the electrode with high iodine loading of 21.2 mg cm-2. This work may inspire new approach to design the Li/I2 (or Li/polyiodide) system with long cycle life.

SELECTION OF CITATIONS
SEARCH DETAIL
...