Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathol Res Pract ; 243: 154364, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36841132

ABSTRACT

Cutaneous melanoma is an aggressive human malignancy, leading to high mortality worldwide. In addition to surgery, radiotherapy and chemotherapy are routine approaches to treat melanoma at late or metastatic stage. However, a group of melanoma patients developed chemoresistance, which ultimately limited the efficiency of chemotherapy. LncRNA NEAT1 (Nuclear-enriched abundant transcript 1) is frequently overexpressed in various cancers. Currently, the precise roles and underlying mechanisms of NEAT1 in chemoresistant melanoma remain unclear. This study reports NEAT1 was significantly upregulated in melanoma tumor specimens and cell lines. Blocking NEAT1 effectively sensitized melanoma cells to cisplatin (CDDP), a frequently used first-line anticancer agent. From the established cisplatin resistant melanoma cell line (SK-MEL-5 CDDP Res), we detected significantly upregulated NEAT1 expression and downregulated miR-519c-3p expression compared with those from SK-MEL-5 parental cells. Subsequently, expression of miR-519c-3p was remarkedly attenuated in melanoma tumors and cell lines. Bioinformatics analysis, RNA pull-down assay and luciferase assay consistently demonstrated that NEAT1 sponged miR-519c-3p to downregulate its expression in melanoma cells. Moreover, we identified the methyl CpG binding protein 2 (MeCP2), which is positively associated with cisplatin resistance in melanoma, was a direct target of miR-519c-3p in melanoma cells. Restoration of MeCP2 rescued the miR-519c-3p-promoted cisplatin sensitization. Finally, we showed restoration of miR-519c-3p in NEAT1-overexpressing SK-MEL-5 CDDP Res cells successfully overrode the NEAT1-promoted cisplatin resistance in melanoma from in vitro and in vivo results. In summary, our results unveiled biological roles and molecular mechanisms of the noncoding RNA-mediated cisplatin resistance in melanoma, suggesting blocking the NEAT1-miR-519c-3p-MeCP2 axis as a therapeutic strategy against chemoresistant melanoma.


Subject(s)
Melanoma , Methyl-CpG-Binding Protein 2 , MicroRNAs , RNA, Long Noncoding , Skin Neoplasms , Humans , Cell Line, Tumor , Cisplatin/pharmacology , Melanoma/drug therapy , Melanoma/genetics , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics
2.
Mol Med Rep ; 16(2): 1964-1972, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28656282

ABSTRACT

Aquaporin 3 (AQP3) and phospholipase D2 (PLD2) are abnormally expressed and/or localized in squamous cell carcinoma (SCC). AQP3 transports glycerol to PLD2 for the synthesis of lipid second messenger, which can mediate the effect of the AQP3/PLD2 signaling module in the regulation of keratinocyte proliferation and differentiation. However, the role of the AQP3/PLD2 signaling module in the pathogenesis of SCC remains to be fully elucidated. In the present study, the expression levels of AQP3 and PLD2 in tissue samples were examined using immunohistochemistry, it was found that the expression levels of AQP3 and PLD2 in tissue samples of actinic keratosis (AK), Bowen's disease (BD) and SCC were significantly increased. AQP3 small interfering RNA (siRNA) and PLD2 siRNA were constructed and used for transfection into the human A431 SCC cell line, and their anticancer effect on SCC was examined. The mRNA expression and protein expression levels of AQP3 and PLD2 were significantly downregulated following siRNA transfection. AQP3 siRNA and PLD2 siRNA inhibited the proliferation and promoted the apoptosis of A431 cells. Taken together, the findings of the present study suggested that increased levels of AQP3 and PLD2 were correlated with tumor progression and development in SCC. AQP3 siRNA and PLD2 siRNA significantly downregulated the mRNA and protein levels of AQP3 and PLD2 in the A431 cells; inhibiting proliferation and promoting apoptosis in vitro. The concomitant effects of AQP3/PLD2 signaling by inhibiting the expression of siRNA may be important for the treatment of SCC in the future.


Subject(s)
Apoptosis , Aquaporin 3/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Phospholipase D/metabolism , RNA, Small Interfering/metabolism , Skin Neoplasms/pathology , Aged , Bowen's Disease/pathology , Cell Line, Tumor , Cell Proliferation , Humans , Keratosis, Actinic/pathology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...