Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 143: 35-46, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644022

ABSTRACT

Selenium (Se) in paddy rice is one of the significant sources of human Se nutrition. However, the effect of arsenic (As) pollution in soil on the translocation of Se species in rice plants is unclear. In this research, a pot experiment was designed to examine the effect of the addition of 50 mg As/kg soil as arsenite or arsenate on the migration of Se species from soil to indica Minghui 63 and Luyoumingzhan. The results showed that the antagonism between inorganic As and Se was closely related to the rice cultivar and Se oxidation state in soil. Relative to the standalone selenate treatment, arsenite significantly (p < 0.05) decreased the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, sheaths, leaves, brans and kernels of both cultivars by 21.4%-100.0%, 40.0%-100.0%, 41.0%-100%, 5.4%-96.3%, 11.3%-100.0% and 26.2%-39.7% respectively, except for selenocystine in the kernels of indica Minghui 63 and selenomethionine in the leaves of indica Minghui 63 and the stems of indica Luyoumingzhan. Arsenate also decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, brans and kernels of both cultivars by 34.9%-100.0%, 30.2%-100.0%, 11.3%-100.0% and 5.6%-39.6% respectively, except for selenate in the stems of indica Minghui 63. However, relative to the standalone selenite treatment, arsenite and arsenate decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenite only in the roots of indica Minghui 63 by 45.5%-100.0%. Our results suggested that arsenite and arsenate had better antagonism toward Se species in selenate-added soil than that in selenite-added soil; moreover, arsenite had a higher inhibiting effect on the accumulation of Se species than arsenate.


Subject(s)
Arsenic , Oryza , Selenium , Soil Pollutants , Soil , Oryza/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Selenium/analysis , Selenium/metabolism , Arsenic/analysis , Arsenic/metabolism , Soil/chemistry , Arsenites
2.
J Sep Sci ; 42(4): 816-825, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30580494

ABSTRACT

An ultra high performance liquid chromatography with triple quadrupole mass spectrometry method for the determination of free and bound phenolic acids in tobacco plant and soil was developed. A simple solid-phase extraction, which used Polar Enhanced Polymer column as stationary phase and methanol as mobile phase, was used for the clean-up of bound phenolic acids, and a liquid-phase extraction using chloroform as solvent was used to purify free phenolic acids. With our method, 18 phenolic acids in rhizosphere soil of continuous cropping flue-cured cultivar k326 were separated and determined within 6 min with recoveries of 82-107% and relative standard deviations (n = 5) of 1.1-4.8%. Results showed that free phenolic acids accounted for 0-9, 92-100, and 69-100% of total phenolic acids in rhizosphere soil, cultivar k326 roots and leaves, respectively. Results also revealed that p-hydroxybenzoic acid, p-coumaric acid, vanillic acid, ferulic acid, and syringic acid were the predominant phenolic acids in rhizosphere soil of cultivar k326, and continuous cropping of cultivar k326 in the same farmland could lead to the accumulation of these phenolic acids in soil except syringic acid. The determination of phenolic acids provided detailed information for evaluating their source and characteristics in continuous cropping tobacco plant and soil.


Subject(s)
Hydroxybenzoates/analysis , Nicotiana/chemistry , Soil/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry , Rhizosphere
SELECTION OF CITATIONS
SEARCH DETAIL
...