Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Magn Reson ; 345: 107321, 2022 12.
Article in English | MEDLINE | ID: mdl-36335877

ABSTRACT

Electromagnetic decoupling among a close-fitting or high-density transceiver RF array elements is required to maintain the integrity of the magnetic flux density from individual channel for enhanced performance in detection sensitivity and parallel imaging. High-impedance RF coils have demonstrated to be a prominent design method to circumvent these coupling issues. Yet, inherent characteristics of these coils have ramification on the B1 field efficiency and SNR. In this work, we propose a hairpin high impedance RF resonator design for highly decoupled multichannel transceiver arrays at ultrahigh magnetic fields. Due to the high impedance property of the hairpin resonators, the proposed transceiver array can provide high decoupling performance without using any dedicated decoupling circuit among the resonant elements. Because of elimination of lumped inductors in the resonator circuit, higher B1 field efficiency in imaging subjects can be expected. In order to validate the feasibility of the proposed hairpin RF coils, systematical studies on decoupling performance, field distribution, and SNR are performed, and the results are compared with those obtained from existing high-impedance RF coil, e.g., "self-decoupled RF coil". To further investigate its performance, an 8-channel head coil array using the proposed hairpin resonators loaded with a cylindrical phantom is designed, demonstrating a 19 % increase of the B1+ field intensity compared to the self-decoupled coils at 7 T. Furthermore, the characteristics of the hairpin RF coils are evaluated using a more realistic human head voxel model numerically. The proposed hairpin RF coil provides excellent decoupling performance and superior RF magnetic field efficiency compared to the "self-decoupled" high impedance coils. Bench test of a pair of fabricated hairpin coils prove to be in good accordance with numerical results.


Subject(s)
Magnetic Resonance Imaging , Humans
3.
Anal Chem ; 94(40): 13834-13841, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36165784

ABSTRACT

Super-resolution microscopy can capture spatiotemporal organizations of protein interactions with resolution down to 10 nm; however, the analyses of more than two proteins involving low-abundance protein are challenging because spectral crosstalk and heterogeneities of individual fluorescent labels result in molecular misidentification. Here we developed a deep learning-based imaging analysis method for spectroscopic single-molecule localization microscopy to minimize molecular misidentification in three-color super-resolution imaging. We characterized the 3-fold reduction of molecular misidentification in the new imaging method using pure samples of different photoswitchable fluorophores and visualized three distinct subcellular proteins in U2-OS cell lines. We further validated the protein counts and interactions of TOMM20, DRP1, and SUMO1 in a well-studied biological process, Staurosporine-induced apoptosis, by comparing the imaging results with Western-blot analyses of different subcellular portions.


Subject(s)
Biological Phenomena , Single Molecule Imaging , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods , Single Molecule Imaging/methods , Staurosporine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...