Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 10(10): 4609-4625, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37593804

ABSTRACT

Developing multifunctional materials with superior thermal conductivity and microwave absorption is an effective means to address the increasingly serious electromagnetic (EM) compatibility and heat dissipation problems in modern electron devices. Here, multifunctional MgO/Mg(OH)2/C, MgO/M/C (M = Co, Ni, Cu), and MgO/NOx/C (N = Fe, Mn) hybrid foams were synthesized using a facile one-step gas-bubble-assisted combustion method, and their texture, composition, and properties were regulated by tuning salt type and feeding ratio. Our results show that the MgO/Co/C foams have high thermal conductivity (3.40-4.09 W m-1 K-1) with a filler load of 20-50 wt% at the Co2+ molar content of φ = 70 mol% and excellent EM wave absorption (EABW = 11.44 GHz), with a thickness of 2.1 mm and a minimal reflection loss of -59.42 dB at φ = 90 mol%. The enhanced properties are ascribed to the construction of foams with 3D interconnected networks and the synergistic effect of magnetic Co, insulating MgO, and dielectric C, which provide a continuous pathway for electron/phonon relay transmission and magnetic/dielectric dual losses. Moreover, the MgO/Co/C foams possess strong mechanical/hydrophobicity performance, tunable magnetic properties, and electrical conductivity, and can be applied in self-cleaning, electromagnetic interference, and heat management. Overall, this study offers a novel understanding of preparing multifunctional heat conductive-EM wave absorptive foam materials in modern electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...