Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 257: 121692, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38713935

ABSTRACT

Shortcut nitrogen removal holds significant economic appeal for mainstream wastewater treatment. Nevertheless, it is too difficult to achieve the stable suppression of nitrite-oxidizing bacteria (NOB), and simultaneously maintain the activity of ammonia-oxidizing bacteria (AOB). This study proposes to overcome this challenge by employing the novel acid-tolerant AOB, namely "Candidatus Nitrosoglobus", in a membrane-aerated biofilm reactor (MABR). Superior partial nitritation was demonstrated in low-strength wastewater from two aspects. First, the long-term operation (256 days) under the acidic pH range of 5.0 to 5.2 showed the successful NOB washout by the in situ free nitrous acid (FNA) of approximately 1 mg N/L. This was evidenced by the stable nitrite accumulation ratio (NAR) close to 100 % and the disappearance of NOB shown by 16S rRNA gene amplicon sequencing and fluorescence in situ hybridization. Second, oxygen was sufficiently supplied in the MABR, leading to an unprecedentedly high ammonia oxidation rate (AOR) at 2.4 ± 0.1 kg N/(m3 d) at a short hydraulic retention time (HRT) of a mere 30 min. Due to the counter diffusion of substrates, the present acidic MABR displayed a significantly higher apparent oxygen affinity (0.36 ± 0.03 mg O2/L), a marginally lower apparent ammonia affinity (14.9 ± 1.9 mg N/L), and a heightened sensitivity to FNA and pH variations, compared with counterparts determined by flocculant acid-tolerant AOB. Beyond supporting the potential application of shortcut nitrogen removal in mainstream wastewater, this study also offers the attractive prospect of intensifying wastewater treatment by markedly reducing the HRT of the aerobic unit.


Subject(s)
Biofilms , Bioreactors , Waste Disposal, Fluid/methods , Ammonia/metabolism , Wastewater/chemistry , Oxidation-Reduction , Nitrites/metabolism , Nitrogen , Hydrogen-Ion Concentration , Bacteria/metabolism , Membranes, Artificial
2.
J Hazard Mater ; 470: 134195, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38581872

ABSTRACT

This study leveraged synthesis gas (syngas), a renewable resource attainable through the gasification of biowaste, to achieve efficient chromate removal from water. To enhance syngas transfer efficiency, a membrane biofilm reactor (MBfR) was employed. Long-term reactor operation showed a stable and high-level chromate removal efficiency > 95%, yielding harmless Cr(III) precipitates, as visualised by scanning electron microscopy and energy dispersive X-ray analysis. Corresponding to the short hydraulic retention time of 0.25 days, a high chromate removal rate of 80 µmol/L/d was attained. In addition to chromate reduction, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms, showing that biological chromate reduction was primarily driven by VFAs produced from in situ syngas fermentation, whereas hydrogen originally present in the syngas played a minor role. 16 S rRNA gene amplicon sequencing has confirmed the enrichment of syngas-fermenting bacteria (such as Sporomusa), who performed in situ gas fermentation leading to the synthesis of VFAs, and organics-utilising bacteria (such as Aquitalea), who utilised VFAs to drive chromate reduction. These findings, combined with batch assays, elucidate the pathways orchestrating synergistic interactions between fermentative microbial cohorts and chromate-reducing microorganisms. The findings facilitate the development of cost-effective strategies for groundwater and drinking water remediation and present an alternative application scenario for syngas.


Subject(s)
Biofilms , Bioreactors , Chromates , Membranes, Artificial , Chromates/metabolism , Fermentation , Water Pollutants, Chemical/metabolism , Oxidation-Reduction , Fatty Acids, Volatile/metabolism , Bacteria/metabolism , Bacteria/genetics , Hydrogen/metabolism , Gases/metabolism , Biodegradation, Environmental
3.
Adv Sci (Weinh) ; 10(3): e2204840, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36424187

ABSTRACT

Sorption-based atmospheric water harvesting (AWH) offers a promising solution to the water scarcity in arid regions. However, majority of the existing AWH sorbents are suffering from rather poor water productivity due to their slow water adsorption-desorption cycling capability especially when they are applied in high packing thickness. Herein, an oxygen plasma-treated magnetic flower-like porous carbon (P-MFPC) with large open surfaces, abundant surface oxygen-containing moieties, and excellent localized magnetic induction heating (LMIH) capacity is developed. These merits, together with the use of air-blowing-assisted water adsorption and LMIH-driven water desorption strategy, synergistically allow P-MFPC with 2 cm of packing thickness to complete a AWH cycling in 20 min and deliver a record 4.5 LH2O kg-1 day-1 of water productivity at 30% relative humidity. Synergistically enabling such an ultrafast AWH cycling at high sorbent packing thickness provides a promising way for the scalable high-yield AWH with compact AWH systems.

4.
ACS Appl Mater Interfaces ; 14(8): 10966-10975, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35179350

ABSTRACT

Solar-powered atmospheric water harvesting (AWH) with metal-organic frameworks (MOFs) has been recognized as an attractive way to alleviate water shortage stress in rural arid areas given the naturally abundant solar energy. However, the existing solar-powered AWH technologies only allow a singular water production mode: either solar heating-driven AWH which usually results in rather poor water productivity due to the limited availability of sufficient sunlight or conductive heating-driven all-day AWH with significantly improved water productivity but requiring additional electricity provided with a photovoltaic module. This greatly limits the flexibility in managing AWH based on climate conditions, water productivity, and energy cost. Herein, a sandwich-structured MOF monolith (denoted as CACS) with dual heating capacity, localized solar heating (LSH) and electrical heating (LEH), is presented. Compared with LSH, the use of LEH leads to more rapid and uniform heating of CACS monoliths, thereby driving a significantly enhanced water desorption efficiency with faster kinetics. Using the CACS monolith as an AWH sorbent, a new type of atmospheric water harvester is developed and able to produce water in multiple working modes: LSH-, LEH-, and LSH-/LEH-driven AWH, thereby enabling flexible AWH on demand: direct use of sunlight for LSH-driven AWH during the sunlight-sufficient day and/or LEH-driven all-day AWH powered by a photovoltaic module particularly during the sunlight-absent/-insufficient time (night or cloudy day). When working at the LSH-/LEH-driven AWH mode, the resulting prototype delivers 1.4 LH2O kgMOF-1 day-1 of water productivity with 2.3 kW·h L-1H2O of energy consumption, corresponding to 5.4 times higher water productivity than the LSH-driven AWH working mode alone and 17.9% of energy saving at the cost of 22.2% of water productivity reduction compared with the LEH-driven AWH working mode alone. The current work, therefore, demonstrates a novel solar-powered AWH strategy that enables all-day water production with flexible choices on AWH working modes in terms of climate conditions, desired water productivity, and energy cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...