Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Cell Endocrinol ; 412: 170-81, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-25963797

ABSTRACT

Oxytocin (OT) stimulates cardioprotection. Here we investigated heart-derived H9c2 cells in simulated ischemia-reperfusion (I-R) experiments in order to examine the mechanism of OT protection. I-R was induced in an anoxic chamber for 2 hours and followed by 2 h of reperfusion. In comparison to normoxia, I-R resulted in decrease of formazan production by H9c2 cells to 63.5 ± 1.7% (MTT assay) and in enhanced apoptosis from 1.7 ± 0.3% to 2.8 ± 0.4% (Tunel test). Using these assays it was observed that treatment with OT (1-500 nM) exerted significant protection during I-R, especially when OT was added at the time of ischemia or reperfusion. Using the CM-H2DCFDA probe we found that OT triggers a short-lived burst in reactive oxygen species (ROS) production in cells but reduces ROS production evoked by I-R. In cells treated with OT, Western-blot revealed the phosphorylation of Akt (Thr 308, p-Akt), eNOS and ERK 1/2. Microscopy showed translocation of p-Akt and eNOS into the nuclear and perinuclear area and NO production in cells treated with OT. The OT-induced protection against I-R was abrogated by an OT antagonist, the Pi3K inhibitor Wortmannin, the cGMP-dependent protein kinase (PKG) inhibitor, KT5823, as well as soluble guanylate cyclase (GC) inhibitor, ODQ, and particulate GC antagonist, A71915. In conditions of I-R, the cells with siRNA-mediated reduction in OT receptor (OTR) expression responded to OT treatment by enhanced apoptosis. In conclusion, the OTR protected H9c2 cells against I-R, especially if activated at the onset of ischemia or reperfusion. The OTR-transduced signals include pro-survival kinases, such as Akt and PKG.


Subject(s)
Cardiotonic Agents/pharmacology , Myocytes, Cardiac/physiology , Oxytocin/pharmacology , Cell Hypoxia , Cell Line , Cells, Cultured , Cyclic GMP-Dependent Protein Kinases/metabolism , Drug Evaluation, Preclinical , Myoblasts/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocytes, Cardiac/drug effects , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Receptors, Oxytocin/metabolism
2.
Endocrinology ; 156(4): 1416-28, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25562615

ABSTRACT

Oxytocin (OT) is involved in the regulation of energy metabolism and in the activation of cardioprotective mechanisms. We evaluated whether chronic treatment with OT could prevent the metabolic and cardiac abnormalities associated with diabetes and obesity using the db/db mice model. Four-week-old male db/db mice and their lean nondiabetic littermates (db/+) serving as controls were treated with OT (125 ng/kg · h) or saline vehicle for a period of 12 weeks. Compared with db/+ mice, the saline-treated db/db mice developed obesity, hyperglycemia, and hyperinsulinemia. These mice also exhibited a deficient cardiac OT/natriuretic system and developed systolic and diastolic dysfunction resulting from cardiomyocyte hypertrophy, fibrosis, and apoptosis. These abnormalities were associated with increased reactive oxygen species (ROS) production, inflammation, and suppressed 5'-adenosine monophosphate kinase signaling pathway. The db/db mice displayed reduced serum levels of adiponectin and adipsin and elevated resistin. OT treatment increased circulating OT levels, significantly reduced serum resistin, body fat accumulation (19%; P<.001), fasting blood glucose levels by (23%; P<.001), and improved glucose tolerance and insulin sensitivity. OT also normalized cardiac OT receptors, atrial natriuretic peptide, and brain natriuretic peptide, expressions and prevented systolic and diastolic dysfunction as well as cardiomyocyte hypertrophy, fibrosis, and apoptosis. Furthermore, OT reduced cardiac oxidative stress and inflammation and normalized the 5'-adenosine monophosphate-activated protein kinase signaling pathway. The complete normalization of cardiac structure and function by OT treatment in db/db mice contrasted with only partial improvement of hyperglycemia and hyperinsulinemia. These results indicate that chronic treatment with OT partially improves glucose and fat metabolism and reverses abnormal cardiac structural remodeling, preventing cardiac dysfunction in db/db mice.


Subject(s)
Cardiomyopathies/prevention & control , Diabetes Mellitus, Type 2/complications , Hyperinsulinism/complications , Obesity/complications , Oxytocin/therapeutic use , Adiponectin/blood , Animals , Blood Glucose/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism/drug effects , Hyperinsulinism/metabolism , Insulin Resistance/physiology , Male , Mice , Obesity/metabolism , Oxytocin/pharmacology , Resistin/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...