Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Cell ; 80(2): 279-295.e8, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33065020

ABSTRACT

The PTEN tumor suppressor controls cell death and survival by regulating functions of various molecular targets. While the role of PTEN lipid-phosphatase activity on PtdIns(3,4,5)P3 and inhibition of PI3K pathway is well characterized, the biological relevance of PTEN protein-phosphatase activity remains undefined. Here, using knockin (KI) mice harboring cancer-associated and functionally relevant missense mutations, we show that although loss of PTEN lipid-phosphatase function cooperates with oncogenic PI3K to promote rapid mammary tumorigenesis, the additional loss of PTEN protein-phosphatase activity triggered an extensive cell death response evident in early and advanced mammary tumors. Omics and drug-targeting studies revealed that PI3Ks act to reduce glucocorticoid receptor (GR) levels, which are rescued by loss of PTEN protein-phosphatase activity to restrain cell survival. Thus, we find that the dual regulation of GR by PI3K and PTEN functions as a rheostat that can be exploited for the treatment of PTEN loss-driven cancers.


Subject(s)
Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , PTEN Phosphohydrolase/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Carcinogenesis , Cell Death , Cell Line, Tumor , Cell Proliferation , Dexamethasone/pharmacology , Female , Humans , Isoenzymes/metabolism , Mice , Models, Biological , Mutation/genetics , Organoids/pathology , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Stability , Proteome/metabolism , Proto-Oncogene Proteins c-akt/metabolism
2.
Cell Death Differ ; 27(2): 742-757, 2020 02.
Article in English | MEDLINE | ID: mdl-31296963

ABSTRACT

Gastrointestinal epithelial cells provide a selective barrier that segregates the host immune system from luminal microorganisms, thereby contributing directly to the regulation of homeostasis. We have shown that from early embryonic development Bcl-G, a Bcl-2 protein family member with unknown function, was highly expressed in gastrointestinal epithelial cells. While Bcl-G was dispensable for normal growth and development in mice, the loss of Bcl-G resulted in accelerated progression of colitis-associated cancer. A label-free quantitative proteomics approach revealed that Bcl-G may contribute to the stability of a mucin network, which when disrupted, is linked to colon tumorigenesis. Consistent with this, we observed a significant reduction in Bcl-G expression in human colorectal tumors. Our study identifies an unappreciated role for Bcl-G in colon cancer.


Subject(s)
Colorectal Neoplasms/metabolism , Inflammation/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Colitis/metabolism , Colitis/pathology , Colorectal Neoplasms/pathology , Humans , Inflammation/pathology , Mice , Mice, Knockout , Proto-Oncogene Proteins c-bcl-2/deficiency , Proto-Oncogene Proteins c-bcl-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...