Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923501

ABSTRACT

Continuous blood pressure (BP) tracking provides valuable insights into the health condition and functionality of the heart, arteries, and overall circulatory system of humans. The rapid development in flexible and wearable electronics has significantly accelerated the advancement of wearable BP monitoring technologies. However, several persistent challenges, including limited sensing capabilities and stability of flexible sensors, poor interfacial stability between sensors and skin, and low accuracy in BP estimation, have hindered the progress in wearable BP monitoring. To address these challenges, comprehensive innovations in materials design, device development, system optimization, and modeling have been pursued to improve the overall performance of wearable BP monitoring systems. In this review, we highlight the latest advancements in flexible and wearable systems toward continuous noninvasive BP tracking with a primary focus on materials development, device design, system integration, and theoretical algorithms. Existing challenges, potential solutions, and further research directions are also discussed to provide theoretical and technical guidance for the development of future wearable systems in continuous ambulatory BP measurement with enhanced sensing capability, robustness, and long-term accuracy.

2.
Nat Commun ; 15(1): 4474, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796514

ABSTRACT

Olfaction feedback systems could be utilized to stimulate human emotion, increase alertness, provide clinical therapy, and establish immersive virtual environments. Currently, the reported olfaction feedback technologies still face a host of formidable challenges, including human perceivable delay in odor manipulation, unwieldy dimensions, and limited number of odor supplies. Herein, we report a general strategy to solve these problems, which associates with a wearable, high-performance olfactory interface based on miniaturized odor generators (OGs) with advanced artificial intelligence (AI) algorithms. The OGs serve as the core technology of the intelligent olfactory interface, which exhibit milestone advances in millisecond-level response time, milliwatt-scale power consumption, and the miniaturized size. Empowered by robust AI algorithms, the olfactory interface shows its great potentials in latency-free mixed reality (MR) and fast olfaction enhancement, thereby establishing a bridge between electronics and users for broad applications ranging from entertainment, to education, to medical treatment, and to human machine interfaces.


Subject(s)
Algorithms , Artificial Intelligence , Odorants , Smell , Wearable Electronic Devices , Humans , Smell/physiology , User-Computer Interface , Adult , Male
3.
Nature ; 628(8006): 84-92, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538792

ABSTRACT

Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods1-3. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation)4-8. Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge. Here we present a general strategy for integrated moisture-permeable wearable electronics based on three-dimensional liquid diode (3D LD) configurations. By constructing spatially heterogeneous wettability, the 3D LD unidirectionally self-pumps the sweat from the skin to the outlet at a maximum flow rate of 11.6 ml cm-2 min-1, 4,000 times greater than the physiological sweat rate during exercise, presenting exceptional skin-friendliness, user comfort and stable signal-reading behaviour even under sweating conditions. A detachable design incorporating a replaceable vapour/sweat-discharging substrate enables the reuse of soft circuitry/electronics, increasing its sustainability and cost-effectiveness. We demonstrated this fundamental technology in both advanced skin-integrated electronics and textile-integrated electronics, highlighting its potential for scalable, user-friendly wearable devices.


Subject(s)
Electronics , Wearable Electronic Devices , Skin , Textiles , Electrodes
4.
Nat Commun ; 14(1): 7539, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985765

ABSTRACT

The rapid diagnosis of respiratory virus infection through breath and blow remains challenging. Here we develop a wireless, battery-free, multifunctional pathogenic infection diagnosis system (PIDS) for diagnosing SARS-CoV-2 infection and symptom severity by blow and breath within 110 s and 350 s, respectively. The accuracies reach to 100% and 92% for evaluating the infection and symptom severity of 42 participants, respectively. PIDS realizes simultaneous gaseous sample collection, biomarker identification, abnormal physical signs recording and machine learning analysis. We transform PIDS into other miniaturized wearable or portable electronic platforms that may widen the diagnostic modes at home, outdoors and public places. Collectively, we demonstrate a general-purpose technology for rapidly diagnosing respiratory pathogenic infection by breath and blow, alleviating the technical bottleneck of saliva and nasopharyngeal secretions. PIDS may serve as a complementary diagnostic tool for other point-of-care techniques and guide the symptomatic treatment of viral infections.


Subject(s)
Body Fluids , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , Specimen Handling , Saliva
5.
ACS Nano ; 17(21): 21947-21961, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37917185

ABSTRACT

Deaf-blindness limits daily human activities, especially interactive modes of audio and visual perception. Although the developed standards have been verified as alternative communication methods, they are uncommon to the nondisabled due to the complicated learning process and inefficiency in terms of communicating distance and throughput. Therefore, the development of communication techniques employing innate sensory abilities including olfaction related to the cerebral limbic system processing emotions, memories, and recognition has been suggested for reducing the training level and increasing communication efficiency. Here, a skin-integrated and wireless olfactory interface system exploiting arrays of miniaturized odor generators (OGs) based on melting/solidifying odorous wax to release smell is introduced for establishing an advanced communication system between deaf-blind and non-deaf-blind. By optimizing the structure design of the OGs, each OG device is as small as 0.24 cm3 (length × width × height of 11 mm × 10 mm × 2.2 mm), enabling integration of up to 8 OGs on the epidermis between nose and lip for direct and rapid olfactory drive with a weight of only 24.56 g. By generating single or mixed odors, different linked messages could be delivered to a user within a short period in a wireless and programmable way. By adopting the olfactory interface message delivery system, the recognition rates for the messages have been improved 1.5 times that of the touch-based method, while the response times were immensely decreased 4 times. Thus, the presented wearable olfactory interface system exhibits great potential as an alternative message delivery method for the deaf-blind.


Subject(s)
Odorants , Smell , Humans , Smell/physiology , Learning , Skin , Electronics
6.
Nat Commun ; 14(1): 5009, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591881

ABSTRACT

Continuous monitoring of arterial blood pressure (BP) outside of a clinical setting is crucial for preventing and diagnosing hypertension related diseases. However, current continuous BP monitoring instruments suffer from either bulky systems or poor user-device interfacial performance, hampering their applications in continuous BP monitoring. Here, we report a thin, soft, miniaturized system (TSMS) that combines a conformal piezoelectric sensor array, an active pressure adaptation unit, a signal processing module, and an advanced machine learning method, to allow real wearable, continuous wireless monitoring of ambulatory artery BP. By optimizing the materials selection, control/sampling strategy, and system integration, the TSMS exhibits improved interfacial performance while maintaining Grade A level measurement accuracy. Initial trials on 87 volunteers and clinical tracking of two hypertension individuals prove the capability of the TSMS as a reliable BP measurement product, and its feasibility and practical usability in precise BP control and personalized diagnosis schemes development.


Subject(s)
Hypertension , Wearable Electronic Devices , Humans , Arterial Pressure , Blood Pressure , Hypertension/diagnosis , Arteries
7.
Nat Commun ; 14(1): 2297, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160931

ABSTRACT

Recent advances in virtual reality (VR) technologies accelerate the creation of a flawless 3D virtual world to provide frontier social platform for human. Equally important to traditional visual, auditory and tactile sensations, olfaction exerts both physiological and psychological influences on humans. Here, we report a concept of skin-interfaced olfactory feedback systems with wirelessly, programmable capabilities based on arrays of flexible and miniaturized odor generators (OGs) for olfactory VR applications. By optimizing the materials selection, design layout, and power management, the OGs exhibit outstanding device performance in various aspects, from response rate, to odor concentration control, to long-term continuous operation, to high mechanical/electrical stability and to low power consumption. Representative demonstrations in 4D movie watching, smell message delivery, medical treatment, human emotion control and VR/AR based online teaching prove the great potential of the soft olfaction interface in various practical applications, including entertainment, education, human machine interfaces and so on.


Subject(s)
Smell , Virtual Reality , Humans , Educational Status , Electricity , Emotions
8.
Adv Healthc Mater ; 12(15): e2202846, 2023 06.
Article in English | MEDLINE | ID: mdl-36773301

ABSTRACT

Intelligent monitoring human physiological information in real time raises the demand for skin-integrated electronics, as which is a flexible format and can be mounted onto the curved human skin for noninvasive healthcare monitoring. The biofluid such as sweat from skin contains abundant biomarkers reflecting body health conditions. Here, a skin-integrated sweat monitor with six biosensors embedded for the detection of NH4 + , Na+ , glucose, pH, skin impedance, and surface temperature is described, which could decode the information in the fresh sweat generated during exercising. Furthermore, the system also includes an innovative safety warning mechanism, which is based on a miniaturized actuator to provide mechanical stimuli, and coupled with six changeable colors light emitting diodes corresponding to the six biosensors for providing simultaneous safety alarming to users. The self-developed microfluidics system with a hydrophilic surface allows to enhance the sweat collection rate. Meanwhile, microfluidic filters can reduce the interruption of skin debris during biosignal monitoring. These state-of-art biosensors can real-time monitor health related signals with excellent linearity and specificity. The skin-integrated sweat monitor system exhibits a great potential in human healthcare monitoring and medical treatment.


Subject(s)
Biosensing Techniques , Sweat , Humans , Skin , Ions , Delivery of Health Care
9.
Nano Lett ; 22(14): 5944-5953, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35816764

ABSTRACT

A combined treatment using medication and electrostimulation increases its effectiveness in comparison with one treatment alone. However, the organic integration of two strategies in one miniaturized system for practical usage has seldom been reported. This article reports an implantable electronic medicine based on bioresorbable microneedle devices that is activated wirelessly for electrostimulation and sustainable delivery of anti-inflammatory drugs. The electronic medicine is composed of a radio frequency wireless power transmission system and a drug-loaded microneedle structure, all fabricated with bioresorbable materials. In a rat skeletal muscle injury model, periodic electrostimulation regulates cell behaviors and tissue regeneration while the anti-inflammatory drugs prevent inflammation, which ultimately enhance the skeletal muscle regeneration. Finally, the electronic medicine is fully bioresorbable, excluding the second surgery for device removal.


Subject(s)
Absorbable Implants , Electric Stimulation Therapy , Animals , Drug Delivery Systems , Electronics, Medical , Radio Waves , Rats , Wireless Technology
10.
Nano Lett ; 22(8): 3447-3456, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35411774

ABSTRACT

Transient power sources with excellent biocompatibility and bioresorablility have attracted significant attention. Here, we report high-performance, transient glucose enzymatic biofuel cells (TEBFCs) based on the laser-induced graphene (LIG)/gold nanoparticles (Au NPs) composite electrodes. Such LIG electrodes can be easily fabricated from polyimide (PI) with an infrared CO2 laser and exhibit a low impedance (16 Ω). The resulted TEBFC yields a high open circuit potential (OCP) of 0.77 V and a maximum power density of 483.1 µW/cm2. The TEBFC not only exhibits a quick response time that enables reaching the maximum OCP within 1 min but also owns a long lifetime over 28 days in vitro. The excellent biocompatibility and transient performance from in vitro and in vivo tests allow long-term implantation of TEBFCs in rats for energy harvesting. The TEBFCs with advanced processing methods provide a promising power solution for transient electronics.


Subject(s)
Bioelectric Energy Sources , Graphite , Metal Nanoparticles , Animals , Electrodes , Gold , Lasers , Rats
11.
Adv Sci (Weinh) ; 9(9): e2104635, 2022 03.
Article in English | MEDLINE | ID: mdl-35088587

ABSTRACT

Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real-time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state-of-art skin-integrated electronics. Sweat-activated biocompatible batteries offer a new powering strategy for skin-like electronics. However, the capacity of the reported sweat-activated batteries (SABs) cannot support real-time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm-2 among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long-term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real-time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real-time monitoring of pH, glucose, and Na+ in sweat.


Subject(s)
Sweat , Wearable Electronic Devices , Electric Power Supplies , Electronics , Skin
SELECTION OF CITATIONS
SEARCH DETAIL
...