Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 7(12): 2000068, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596115

ABSTRACT

Narrow bandgap semiconductor-based photodetectors often suffer from high room-temperature noise and are therefore operated at low temperatures. Here, a hybrid poly(3-hexylthiophene) (P3HT): HgTe quantum dot (QD) phototransistor is reported, which exhibits high sensitivity and fast photodetection up to 2400 nm wavelength range at room temperature. The active layer of the phototransistor consists of HgTe QDs well dispersed in a P3HT matrix. Fourier-transform infrared spectra confirm that chemical grafting between P3HT and HgTe QDs is realized after undergoing prolonged coblend stirring and a ligand exchange process. Thanks to the shifting of the charge transport into the P3HT and the partial passivation of the surface traps of HgTe QDs in the blend, the P3HT: HgTe QD hybrid phototransistor shows significantly improved gate-voltage tuning, 15 times faster response, and ≈80% reduction in the noise level compared to a pristine HgTe QD control device. More than 1011 Jones specific detectivity (estimated from the noise spectral density measured at 1 kHz) is achieved at room temperature, and the response time (measured at 22 mW cm-2 illumination intensity) of the device is less than 1.5 µs. That is comparable to commercial epitaxially grown IR photodetectors operated in the same wavelength range.

2.
ACS Appl Mater Interfaces ; 6(23): 20676-84, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25408486

ABSTRACT

The effects of gold nanoparticles (AuNPs) incorporated in the hole transporting layer (HTL) of poly[[4,8-bis[(2-ethylhexyl)oxy] benzo[1,2-b:4,5-b'] dithiophene-2, 6-diyl] [3-fluoro-2-[(2-ethylhexy)carbonyl]thieno[3,4-b]thiophened iyl]] (PTB7): [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) based solar cells are being systematically investigated in terms of the optical properties, electrical properties, and photovoltaic performance. The impacts of AuNPs on the optical response of the devices are modeled by finite-difference time-domain (FDTD) simulation. The size of the AuNPs used in this work is around 50-70 nm, so that 10-20 nm penetrated from the HTL into the active layer. We found that the power conversion efficiencies (PCEs) of the devices with AuNPs are significantly enhanced from 7.5%, for the control device, to 8.0%, 8.1%, and 8.2% for Au nanosphere-, nanorod-, and nanocube-incorporated devices, respectively. Among the photovoltaic parameters of the AuNP devices, the short circuit current density (JSC) exhibits the largest improvement, which can be attributed to the improved optical properties of the devices. On the basis of the calculation results, the scattering cross section for the samples in the presence of AuNPs can be enhanced by a factor of ∼10(10)-10(13) and Au nanocubes exhibit superior scattering cross section compared to the Au nanospheres and nanorods with the same linear dimension. From the experimental impedance spectroscopy results, we found that the addition of AuNPs had little effect on the electrical properties of the device. The device performance is also found to be sensitive to the concentration and morphology of the AuNPs.

3.
Sci Rep ; 4: 6752, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25341527

ABSTRACT

We report investigations on the influences of post-deposition treatments on the performance of solution-processed methylammonium lead triiodide (CH3NH3PbI3)-based planar solar cells. The prepared films were stored in pure N2 at room temperature or annealed in pure O2 at room temperature, 45°C, 65°C and 85°C for 12 hours prior to the deposition of the metal electrodes. It is found that annealing in O2 leads to substantial increase in the power conversion efficiencies (PCEs) of the devices. Furthermore, strong dependence on the annealing temperature for the PCEs of the devices suggests that a thermally activated process may underlie the observed phenomenon. It is believed that the annealing process may facilitate the diffusion of O2 into the spiro-MeOTAD for inducing p-doping of the hole transport material. Furthermore, the process can result in lowering the localized state density at the grain boundaries as well as the bulk of perovskite. Utilizing thermal assisted O2 annealing, high efficiency devices with good reproducibility were attained. A PCE of 15.4% with an open circuit voltage (VOC) 1.04 V, short circuit current density (JSC) 23 mA/cm(2), and fill factor 0.64 had been achieved for our champion device.

SELECTION OF CITATIONS
SEARCH DETAIL
...