Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 617(7962): 724-729, 2023 May.
Article in English | MEDLINE | ID: mdl-37138081

ABSTRACT

The carbon dioxide and carbon monoxide electroreduction reactions, when powered using low-carbon electricity, offer pathways to the decarbonization of chemical manufacture1,2. Copper (Cu) is relied on today for carbon-carbon coupling, in which it produces mixtures of more than ten C2+ chemicals3-6: a long-standing challenge lies in achieving selectivity to a single principal C2+ product7-9. Acetate is one such C2 compound on the path to the large but fossil-derived acetic acid market. Here we pursued dispersing a low concentration of Cu atoms in a host metal to favour the stabilization of ketenes10-chemical intermediates that are bound in monodentate fashion to the electrocatalyst. We synthesize Cu-in-Ag dilute (about 1 atomic per cent of Cu) alloy materials that we find to be highly selective for acetate electrosynthesis from CO at high *CO coverage, implemented at 10 atm pressure. Operando X-ray absorption spectroscopy indicates in situ-generated Cu clusters consisting of <4 atoms as active sites. We report a 12:1 ratio, an order of magnitude increase compared to the best previous reports, in the selectivity for acetate relative to all other products observed from the carbon monoxide electroreduction reaction. Combining catalyst design and reactor engineering, we achieve a CO-to-acetate Faradaic efficiency of 91% and report a Faradaic efficiency of 85% with an 820-h operating time. High selectivity benefits energy efficiency and downstream separation across all carbon-based electrochemical transformations, highlighting the importance of maximizing the Faradaic efficiency towards a single C2+ product11.

2.
ACS Appl Mater Interfaces ; 14(28): 32683-32695, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35817012

ABSTRACT

Thin-film photovoltaic cells using Cu2ZnSnS4 (CZTS, p-type) have many advantages, such as high photoconversion, low cost, and great tunability with earth-abundant, nontoxic elements, all of which are necessary to be long-term contributors to next-generation solar energy harvesting. Accurate measurements of bonding and band structures of both the thin-film materials and their interfaces are paramount to designing the solar devices layer-by-layer. Here, finely tuned 1 µm thick CZTS films, 50 nm thick CdS layers (n-type), and their 1 µm/2 nm p-n junction were fabricated inexpensively using our previously studied methods and investigated extensively for maximizing the key interface in the CZTS solar devices. Synthesized bulk CZTS and CdS were analyzed for structural deviations and crystal defects using synchrotron-based (SR) X-ray absorption fine structure (XAFS) along with simulated XAFS patterns. The structural properties of the two materials were designed to favor photovoltaic activity. Interface valence band structures of the CZTS/CdS p-n junction were measured through SR X-ray photoelectron spectroscopy (SR-XPS) and compared with the ones simulated using density functional theory. A full band diagram was constructed from XPS of the bulk films and SR-XPS of the interface, providing guidelines in optimizing charge-carrier extraction from the CZTS absorber to CdS buffer layer. It turns out that a small spike-like interface in the conduction band overlap was formed, maintaining a strong internal bias, while favoring a small energy barrier to prevent large-scale recombination from occurring. A large open-circuit voltage was obtained in the preliminary solar cell devices built on the small spike-like interface.

3.
Nano Lett ; 20(10): 7751-7759, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32959660

ABSTRACT

Developing efficient Pt-based electrocatalysts for the methanol oxidation reaction (MOR) is of pivotal importance for large-scale application of direct methanol fuel cells (DMFCs), but Pt suffers from severe deactivation brought by the carbonaceous intermediates such as CO. Here, we demonstrate the formation of a bismuth oxyhydroxide (BiOx(OH)y)-Pt inverse interface via electrochemical reconstruction for enhanced methanol oxidation. By combining density functional theory calculations, X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy, and electrochemical characterizations, we reveal that the BiOx(OH)y-Pt inverse interface can induce the electron deficiency of neighboring Pt; this would result in weakened CO adsorption and strengthened OH adsorption, thereby facilitating the removal of the poisonous intermediates and ensuring the high activity and good stability of Pt2Bi sample. This work provides a comprehensive understanding of the inverse interface structure and deep insight into the active sites for MOR, offering great opportunities for rational fabrication of efficient electrocatalysts for DMFCs.

4.
J Chem Phys ; 148(13): 134702, 2018 Apr 07.
Article in English | MEDLINE | ID: mdl-29626909

ABSTRACT

The importance of renewable resources is becoming more and more influential on research due to the depletion of fossil fuels. Cost-effective ways of harvesting solar energy should also be at the forefront of these investigations. Cu2ZnSnS4 (CZTS) solar cells are well within the frame of these goals, and a thorough understanding of how they are made and processed synthetically is crucial. The CZTS/CdS heterojunction was examined using photoelectrochemistry and synchrotron radiation (SR) spectroscopy. These tools provided physical insights into this interface that was formed by the electrophoretic deposition of CZTS nanocrystals and chemical bath deposition (CBD) of CdS for the respective films. It was discovered that CBD induced a change in the local and long range environment of the Zn in the CZTS lattice, which was detrimental to the photoresponse. X-ray absorption near-edge structures and extended X-ray absorption fine structures (EXAFSs) of the junction showed that this change was at an atomic level and was associated with the coordination of oxygen to zinc. This was confirmed through FEFF fitting of the EXAFS and through IR spectroscopy. It was found that this change in both photoresponse and the Zn coordination can be reversed with the use of low temperature annealing. Investigating CZTS through SR techniques provides detailed structural information of minor changes from the zinc perspective.

5.
J Chem Phys ; 145(20): 204702, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27908128

ABSTRACT

Solar cell performance is most affected by the quality of the light absorber layer. For thin-film devices, this becomes a two-fold problem of maintaining a low-cost design with well-ordered nanocrystal (NC) structure. The use of Cu2ZnSnS4 (CZTS) NCs as the light absorber films forms an ideal low-cost design, but the quaternary structure makes it difficult to maintain a well-ordered layer without the use of high-temperature treatments. There is little understanding of how CZTS NC structures affect the photoconversion efficiency, the charge-carriers, and therefore the performance of the device manufactured from it. To examine these relationships, the measured photoresponse from the photo-generation of charge-carrier electron-hole pairs was compared against the crystal structure, as short-range and long-range crystal orders for the films. The photoresponse simplifies the electronic properties into three basic steps that can be associated with changes in energy levels within the band structure. These changes result in the formation of barriers to charge-carrier flow. The extent of these barriers was determined using synchrotron-based X-ray absorbance fine structure to probe the individual metal centers in the film, and comparing these to molecular simulations of the ideal extended x-ray absorbance fine structure scattering. This allowed for the quantification of bond lengths, and thus an interpretation of the distortions in the crystal lattice. The various characteristics of the photoresponse were then correlated to the crystallographic order and used to gain physical insight into barriers to charge-carriers in the bulk and surface regions of CZTS films.

6.
J Phys Chem B ; 119(31): 10052-9, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26162602

ABSTRACT

Mesoporous spheres of calcium silicate hydrate (MS-CSH) have been prepared by an ultrasonic method. Following an earlier work in which we have revealed the interactions between ibuprofen (IBU) and CSH carriers with different morphologies by X-ray absorption near edge structures (XANES) analysis. In the present investigation, two new drug molecules, alendronate sodium (ALN) and gentamicin sulfate (GS), were incorporated into MS-CSH, and their drug loading capacities (DLCs) were measured using thermogravimetric analysis to establish the relationship between drug-carrier interactions and DLCs. The XANES spectra clearly indicate that acidic functional groups of the drug molecules linked to the active sites (Ca-OH and Si-OH groups) of MS-CSH on the surface by electrostatic interactions. In addition, it is found that the stoichiometric ratio of Ca(2+) ions of CSH carriers and the functional groups of drug molecules may significantly influence the DLCs.


Subject(s)
Alendronate/chemistry , Calcium Compounds/chemistry , Gentamicins/chemistry , Silicates/chemistry , Water/chemistry , Drug Carriers/chemistry , Models, Molecular , Molecular Structure , Particle Size , Surface Properties , Thermogravimetry , X-Ray Absorption Spectroscopy
7.
Phys Chem Chem Phys ; 15(36): 15033-40, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-23925643

ABSTRACT

The interaction between drug carrier and drug molecules is fundamental for the study of drug delivery, drug targeting, and drug release. Until now, little has been known about the interaction at the molecular level. X-Ray absorption near edge structure (XANES) spectroscopy is a sensitive tool for identifying this interaction. Herein, we report the use of calcium and silicon K-edge X-ray absorption near edge structure (XANES) spectroscopy to investigate how drug molecules interact with different functional groups in calcium silicate hydrate and anhydrous calcium silicate nanocarriers with different morphologies. Significant changes are observed in the XANES spectra after drug loading; ibuprofen (IBU) loading leads to the ordering of silicates locally and there is loss of hydrates during the IBU loading processes.


Subject(s)
Calcium Compounds/chemistry , Drug Carriers/chemistry , Ibuprofen/chemistry , Nanoparticles/chemistry , Silicates/chemistry , Molecular Structure , Particle Size , Surface Properties , X-Ray Absorption Spectroscopy
8.
Chem Commun (Camb) ; 46(37): 7016-8, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20740225

ABSTRACT

Measurement of the ionic nature of [Ge(cryptand[2.2.2])](2+) by XANES has provided direct experimental evidence that the germanium center is best described as a nearly-naked dication encased within an electron rich cryptand cage.

9.
J Chem Phys ; 132(23): 234701, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20572728

ABSTRACT

X-ray excited optical luminescence (XEOL) spectroscopy has been used to investigate the optical emission properties of Ce(3+) activated Ba(2)Ca(BO(3))(2) with a charge-compensating Na(+) and the results are compared with the optical emission properties from UV excitation. Further, x-ray absorption near-edge structure (XANES) has been employed to study the chemical environment and energy transfer efficiency to optical emission upon x-ray excitation. XEOL results agree well with optical emission with UV excitation. XANES results across various absorption edges show that while the chemical environment of host materials does not change significantly with doping, luminescence yield decreases significantly at absorption edges due to an abrupt change in the de-excitation mechanism.


Subject(s)
Borates/chemistry , Cerium/chemistry , Luminescent Measurements , Sodium/chemistry , X-Ray Absorption Spectroscopy , Absorption , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...