Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Acta Pharmaceutica Sinica B ; (6): 1348-1357, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-982809

ABSTRACT

Messenger RNA (mRNA) has drawn much attention in the medical field. Through various treatment approaches including protein replacement therapies, gene editing, and cell engineering, mRNA is becoming a potential therapeutic strategy for cancers. However, delivery of mRNA into targeted organs and cells can be challenging due to the unstable nature of its naked form and the low cellular uptake. Therefore, in addition to mRNA modification, efforts have been devoted to developing nanoparticles for mRNA delivery. In this review, we introduce four categories of nanoparticle platform systems: lipid, polymer, lipid-polymer hybrid, and protein/peptide-mediated nanoparticles, together with their roles in facilitating mRNA-based cancer immunotherapies. We also highlight promising treatment regimens and their clinical translation.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-462915

ABSTRACT

The COVID-19 pandemic persists as a global health crisis for which curative treatment has been elusive. Development of effective and safe anti-SARS-CoV-2 therapies remains an urgent need. SARS-CoV-2 entry into cells requires specific host proteases including TMPRSS2 and Cathepsin L (Ctsl)1-3, but there has been no reported success in inhibiting host proteases for treatment of SARS-CoV-2 pathogenesis in vivo. Here we have developed a lung Ctsl mRNA-targeted, CRISPR/Cas13d-based nanoparticle therapy to curb fatal SARS-CoV-2 infection in a mouse model. We show that this nanotherapy can decrease lung Ctsl expression in normal mice efficiently, specifically, and safely. Importantly, this lung-selective Ctsl-targeted nanotherapy significantly extended the survival of lethally SARS-CoV-2 infected mice by decreasing lung virus burden, reducing expression of pro-inflammatory cytokines/chemokines, and diminishing the severity of pulmonary interstitial inflammation. Additional in vitro analyses demonstrated that Cas13d-mediated Ctsl knockdown inhibited infection mediated by the spike protein of SARS-CoV-1, SARS-CoV-2, and more importantly, the authentic SARS-CoV-2 B.1.617.2 Delta variant, regardless of TMPRSS2 expression status. Our results demonstrate the efficacy and safety of a lung-selective, Ctsl-targeted nanotherapy against infection by SARS-CoV-2 and likely other emerging coronaviruses, forming a basis for investigation of this approach in clinical trials.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-019877

ABSTRACT

SARS-CoV-2 has rapidly become a pandemic worldwide; therefore, an effective vaccine is urgently needed. Recently, messenger RNAs (mRNAs) have emerged as a promising platform for vaccination. Here, we systematically investigated the untranslated regions (UTRs) of mRNAs in order to enhance protein production. Through a comprehensive analysis of endogenous gene expression and de novo design of UTRs, we identified the optimal combination of 5 and 3 UTR, termed as NASAR, which was five to ten-fold more efficient than the tested endogenous UTRs. More importantly, NASAR mRNAs delivered by lipid-derived nanoparticles showed dramatic expression of potential SARS-CoV-2 antigens both in vitro and in vivo. These NASAR mRNAs merit further development as alternative SARS-CoV-2 vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL