Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
J Control Release ; 368: 397-412, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423475

ABSTRACT

Platelet-rich plasma (PRP) is a source of growth factors, which are implicated in active tissue regeneration. However, after transplantation the efficacy of these bioactive compounds is often diminished due to rapid degradation and untargeted localization. For this reason, we evaluated the potential of nanofibrillated cellulose (NFC) hydrogel as a PRP carrier. NFC hydrogel is an animal-free biomaterial that, when doped with cellulase, can assist the release of PRP in a wound site. In this study, we examined the effects of 0.5% (m/v) NFC hydrogel formulations, including PRP and cellulase, on the migration and proliferation of skin cells via an in vitro scratch wound model. The suitability of the 0.8% NFC hydrogel formulations for accelerated wound healing and PRP carrying was studied in vitro in diffusion studies and in vivo in a full-thickness excisional wound model in SKH1 mice. None of the NFC hydrogel formulations with or without PRP and cellulase disturbed the normal cell behavior in vitro, and cellulase was successfully used to degrade NFC. NFC hydrogel slowed fibroblast migration rate in vitro. In vivo, NFC hydrogel treatment showed significantly enhanced re-epithelialization compared to control and supported collagen deposition. In addition, angiogenesis was significantly induced via PRP release after degrading NFC hydrogel with cellulase without abnormal host reaction. This study demonstrates the potential of NFC hydrogel with cellulase as a carrier for PRP with controlled release in future skin tissue engineering applications.


Subject(s)
Cellulases , Platelet-Rich Plasma , Mice , Animals , Hydrogels/pharmacology , Cellulose , Wound Healing , Cellulases/pharmacology
2.
J Chromatogr A ; 1707: 464293, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37579702

ABSTRACT

Purification of extracellular vesicles for research and therapeutic applications requires updated methodology to address the limitations of traditional ultracentrifugation and other size-based separation techniques. Their downfalls include induced extracellular vesicle aggregation, low yields, poor scalability and one-dimensionality of the separation process, as the size or sedimentation speed of extracellular vesicles is often the only selection criterion. Ion exchange chromatography is a promising alternative or supplementary method candidate, as it offers a different approach for extracellular vesicle separation, which is surface charge. For now, mostly anion exchange chromatography has been evaluated for extracellular vesicle purification, as it successfully relies on the strongly negative surface charge of extracellular vesicles. However, as extracellular vesicles are very complex in their structure, also cation exchange chromatography could be applicable, due to individual cationic domains on the extracellular vesicle surface. Here, we compare anion exchange chromatography to different types of cation exchange chromatography for the purification of platelet extracellular vesicle samples also containing plasma-derived impurities. We found that the choice of resin structure used for cation exchange chromatography is critical for binding platelet extracellular vesicles, as a conventional-type cation exchanger was found to only capture and elute less than 20% of extracellular vesicles. With the tentacle-type resin, it was possible to obtain comparable platelet extracellular vesicle yields (over 90%) with cation exchange chromatography compared to anion exchange chromatography, as well as superior purity, especially when it was combined to conventional cation exchange resin.


Subject(s)
Extracellular Vesicles , Ligands , Chromatography, Ion Exchange/methods , Ultracentrifugation , Extracellular Vesicles/chemistry , Cation Exchange Resins/chemistry
3.
Eur J Drug Metab Pharmacokinet ; 48(1): 23-34, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36309950

ABSTRACT

BACKGROUND AND OBJECTIVES: The treatment of Parkinson's disease (PD) is still symptomatic since disease-modifying treatments for PD are not available. Oral levodopa is the gold standard for the treatment of PD motor symptoms. However, incomplete and fluctuating plasma exposure of levodopa leads to suboptimal treatment of the symptoms. The main objective of this study was to investigate to what extent increased carbidopa doses (50 and 100 mg) increase the plasma levels of 100-mg immediate-release (IR) levodopa compared to a 25-mg carbidopa dose with and without co-administration of 200 mg entacapone. METHODS: A double-blind, placebo-controlled, randomized, crossover, phase I, pharmacokinetic study with 25 healthy volunteers was conducted. In addition, a semi-mechanistic pharmacokinetic model was built to theoretically evaluate the effect of inhibiting aromatic amino acid decarboxylase (AADC) and catechol-O-methyltransferase (COMT) mediated metabolism of levodopa on the exposure of levodopa. RESULTS: The effect of increased carbidopa doses 50 and 100 mg on the total exposure (AUC) of 100 mg IR levodopa was +29% and +36%, respectively, when entacapone was co-administered. Without entacapone, the corresponding increases were +13% and +17%. With entacapone co-administration, the increased carbidopa dose also clearly increased levodopa trough concentration. There was no significant effect on the peak concentrations of levodopa. CONCLUSIONS: Increasing carbidopa doses significantly increased the exposure and reduced the fluctuation of IR levodopa in plasma during simultaneous COMT inhibition with entacapone. Theoretical pharmacokinetic simulations suggested that the plasma profile of oral IR levodopa can be even further improved by optimizing AADC and COMT inhibition.


Subject(s)
Levodopa , Parkinson Disease , Humans , Carbidopa/pharmacokinetics , Carbidopa/therapeutic use , Antiparkinson Agents , Catechol O-Methyltransferase/metabolism , Healthy Volunteers , Catechol O-Methyltransferase Inhibitors/pharmacology , Catechol O-Methyltransferase Inhibitors/therapeutic use , Parkinson Disease/drug therapy
4.
Polymers (Basel) ; 14(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36559897

ABSTRACT

Nanofibrillated cellulose (NFC) hydrogel is a versatile biomaterial suitable, for example, for three-dimensional (3D) cell spheroid culturing, drug delivery, and wound treatment. By freeze-drying NFC hydrogel, highly porous NFC structures can be manufactured. We freeze-dried NFC hydrogel and subsequently reconstituted the samples into a variety of concentrations of NFC fibers, which resulted in different stiffness of the material, i.e., different mechanical cues. After the successful freeze-drying and reconstitution, we showed that freeze-dried NFC hydrogel can be used for one-step 3D cell spheroid culturing of primary mesenchymal stem/stromal cells, prostate cancer cells (PC3), and hepatocellular carcinoma cells (HepG2). No difference was observed in the viability or morphology between the 3D cell spheroids cultured in the freeze-dried and reconstituted NFC hydrogel and fresh NFC hydrogel. Furthermore, the 3D cultured spheroids showed stable metabolic activity and nearly 100% viability. Finally, we applied a convolutional neural network (CNN)-based automatic nuclei segmentation approach to automatically segment individual cells of 3D cultured PC3 and HepG2 spheroids. These results provide an application to culture 3D cell spheroids more readily with the NFC hydrogel and a step towards automatization of 3D cell culturing and analysis.

5.
Biomedicines ; 10(10)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36289846

ABSTRACT

Adipose-derived mesenchymal stromal cells (ASCs) hold great potential for cellular therapies by having immunomodulatory behavior and tissue regenerative properties. Due to the capability of ASCs to differentiate into endothelial cells (ECs) and other angiogenic cell types, such as pericytes, ASCs are a highly valuable source for stimulating angiogenesis. However, cellular therapies in tissue engineering have faced challenges in poor survival of the cells after transplantation, which is why a protective biomaterial scaffold is required. In this work, we studied the potential of nanofibrillated cellulose (NFC) hydrogel to be utilized as a suitable matrix for three-dimensional (3D) cell culturing of human-derived ASCs (hASCs) and studied their angiogenic properties and differentiation potential in ECs and pericytes. In addition, we tested the effect of hASC-conditioned medium and stimulation with angiopoietin-1 (Ang-1) on human umbilical vein endothelial cells (HUVECs) to induce blood vessel-type tube formation in NFC hydrogel. The hASCs were successfully 3D cell cultured in NFC hydrogel as they formed spheroids and had high cell viability with angiogenic features. Most importantly, they showed angiogenic potential by having pericyte-like characteristics when differentiated in EC medium, and their conditioned medium improved HUVEC viability and tube formation, which recalls the active paracrine properties. This study recommends NFC hydrogel for future use as an animal-free biomaterial scaffold for hASCs in therapeutic angiogenesis and other cell therapy purposes.

7.
BMC Bioinformatics ; 23(1): 289, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35864453

ABSTRACT

BACKGROUND: The segmentation of 3D cell nuclei is essential in many tasks, such as targeted molecular radiotherapies (MRT) for metastatic tumours, toxicity screening, and the observation of proliferating cells. In recent years, one popular method for automatic segmentation of nuclei has been deep learning enhanced marker-controlled watershed transform. In this method, convolutional neural networks (CNNs) have been used to create nuclei masks and markers, and the watershed algorithm for the instance segmentation. We studied whether this method could be improved for the segmentation of densely cultivated 3D nuclei via developing multiple system configurations in which we studied the effect of edge emphasizing CNNs, and optimized H-minima transform for mask and marker generation, respectively. RESULTS: The dataset used for training and evaluation consisted of twelve in vitro cultivated densely packed 3D human carcinoma cell spheroids imaged using a confocal microscope. With this dataset, the evaluation was performed using a cross-validation scheme. In addition, four independent datasets were used for evaluation. The datasets were resampled near isotropic for our experiments. The baseline deep learning enhanced marker-controlled watershed obtained an average of 0.69 Panoptic Quality (PQ) and 0.66 Aggregated Jaccard Index (AJI) over the twelve spheroids. Using a system configuration, which was otherwise the same but used 3D-based edge emphasizing CNNs and optimized H-minima transform, the scores increased to 0.76 and 0.77, respectively. When using the independent datasets for evaluation, the best performing system configuration was shown to outperform or equal the baseline and a set of well-known cell segmentation approaches. CONCLUSIONS: The use of edge emphasizing U-Nets and optimized H-minima transform can improve the marker-controlled watershed transform for segmentation of densely cultivated 3D cell nuclei. A novel dataset of twelve spheroids was introduced to the public.


Subject(s)
Algorithms , Neural Networks, Computer , Biomarkers , Cell Nucleus , Humans , Image Processing, Computer-Assisted/methods , Microscopy
8.
Eur J Pharm Sci ; 172: 106135, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35121019

ABSTRACT

Extracellular vesicles (EVs) are a complex and heterogeneous population of nanoparticles involved in cell-to-cell communication. Recently, numerous studies have indicated the potential of EVs as therapeutic agents, drug carriers and diagnostic tools. However, the results of these studies are often difficult to evaluate, since different characterization methods are used to assess the purity, physical and biochemical characteristics of the EV samples. In this study, we compared four methods for the EV sample characterization and purity assessment: i) the particle-to-protein ratio based on particle analyses with nanoparticle tracking and protein concentration by bicinchoninic acid assay, ii) Western Blot analysis for specific EV biomarkers, iii) two spectroscopic lipid-to-protein ratios by either the attenuated total reflection Fourier transform infrared (ATR-FTIR) or Raman spectroscopy. The results confirm the value of Raman and ATR-FTIR spectroscopy as robust, fast and operator independent tools that require only a few microliters of EV sample. We propose that the spectroscopic lipid-to-protein (Li/Pr) ratios are reliable parameters for the purity assessment of EV preparations. Moreover, apart from determining protein concentrations, we show that ATR-FTIR spectroscopy can also be used for indirect measurements of EV concentrations. Nevertheless, the Li/Pr ratios do not represent full characterization of the EV preparations. For a complete characterization of selected EV preparations, we recommend also additional use of particle size distribution and EV biomarker analysis.


Subject(s)
Extracellular Vesicles , Spectrum Analysis, Raman , Drug Carriers/metabolism , Extracellular Vesicles/metabolism , Proteins/analysis , Spectroscopy, Fourier Transform Infrared
9.
Int J Pharm ; 617: 121581, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35176331

ABSTRACT

Biomaterial aerogel fabrication by freeze-drying must be further improved to reduce the costs of lengthy freeze-drying cycles and to avoid the formation of spongy cryogels and collapse of the aerogel structures. Residual water content is a critical quality attribute of the freeze-dried product, which can be monitored in-line with near-infrared (NIR) spectroscopy. Predictive models of NIR have not been previously applied for biomaterials and the models were mostly focused on the prediction of only one formulation at a time. We recorded NIR spectra of different nanofibrillated cellulose (NFC) hydrogel formulations during the secondary drying and set up a partial least square regression model to predict their residual water contents. The model can be generalized to measure residual water of formulations with different NFC concentrations and the excipients, and the NFC fiber concentrations and excipients can be separated with the principal component analysis. Our results provide valuable information about the freeze-drying of biomaterials and aerogel fabrication, and how NIR spectroscopy can be utilized in the optimization of residual water content.


Subject(s)
Cellulose , Spectroscopy, Near-Infrared , Freeze Drying/methods , Least-Squares Analysis , Principal Component Analysis , Spectroscopy, Near-Infrared/methods
10.
Bioconjug Chem ; 33(1): 206-218, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34985282

ABSTRACT

Glyco-decorated spherical nucleic acids (SNAs) may be attractive delivery vehicles, emphasizing the sugar-specific effect on the outer sphere of the construct and at the same time hiding unfavorable distribution properties of the loaded oligonucleotides. As examples of such nanoparticles, tripodal sugar constituents of bleomycin were synthesized and conjugated with a fluorescence-labeled antisense oligonucleotide (AONARV7). Successive copper(I)-catalyzed azide-alkyne and strain-promoted alkyne-nitrone cycloadditions (SPANC) were utilized for the synthesis. Then, the glyco-AONARV7 conjugates were hybridized with complementary strands of a C60-based molecular spherical nucleic acid (i.e., a hybridization-mediated carrier). The formation and stability of these assembled glyco-decorated SNAs were evaluated by polyacrylamide gel electrophoresis (PAGE), UV melting profile analysis, and time-resolved fluorescence spectroscopy. Association constants were extracted from time-resolved fluorescence data. Preliminary cellular uptake experiments of the glyco-AONARV7 conjugates (120 nM solutions) and of the corresponding glyco-decorated SNAs (10 nM solutions) with human prostate cancer cells (PC3) showed an efficient uptake in each case. A marked variation in intracellular distribution was observed.


Subject(s)
Gold
11.
ACS Omega ; 7(1): 1329-1336, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036794

ABSTRACT

Bingel cyclopropanation between Buckminster fullerene and a heteroarmed malonate was utilized to produce a hexakis-functionalized C60 core, with azide and tetrazine units. This orthogonally bifunctional C60 scaffold can be selectively one-pot functionalized by two pericyclic click reactions, that is, inverse electron-demand Diels-Alder and azide-alkyne cycloaddition, which with appropriate ligands (monosaccharides, a peptide and oligonucleotides tested) allows one to control the assembly of heteroantennary bioconjugates.

12.
Res Social Adm Pharm ; 18(6): 3004-3012, 2022 06.
Article in English | MEDLINE | ID: mdl-34344607

ABSTRACT

BACKGROUND: There is a need for effective and cost-effective interprofessional care models that support older people to maintain their quality of life (QoL) and physical performance to live longer independently in their own homes. OBJECTIVES: The objectives were to evaluate effectiveness, QoL and physical performance, and cost-utility of a people-centred care model (PCCM), including the contribution of clinically trained pharmacists, compared with that of usual care in primary care. METHODS: A randomised controlled trial (RCT) with a two-year follow-up was conducted. The participants were multimorbid community-living older people, aged ≥75 years. The intervention comprised an at-home patient interview, health review, pharmacist-led clinical medication review, an interprofessional team meeting, and nurse-led care coordination and health support. At the baseline and at the 1-year and 2-year follow-ups, QoL (SF-36, 36-Item Short-Form Health Survey) and physical performance (SPPB, Short Performance Physical Battery) were measured. Additionally, a physical dimension component summary in the SF-36 was calculated. The SF-36 data were transformed into SF-6D scores to calculate quality-adjusted life-years (QALYs). Healthcare resource use were collected and transformed into costs. A healthcare payer perspective was adopted. Incremental cost-effectiveness ratio (ICER) was calculated, and one-way sensitivity analysis was performed. RESULTS: No statistically or clinically significant differences were observed between the usual care (n = 126) and intervention group (n = 151) patients in their QoL; at the 2-year follow-up the mean difference was -0.02, (95 % CI -0.07; 0.04,p = 0.56). While the mean difference between the groups in physical performance at the 2-year follow-up was -1.02, (-1.94;-0.10,p = 0.03), between the physical component summary scores it was -7.3, (-15.2; 0.6,p = 0.07). The ICER was -73 638€/QALY, hence, the developed PCCM dominated usual care, since it was more effective and less costly. CONCLUSIONS: The cost-utility analysis showed that the PCCM including pharmacist-led medication review dominated usual care. However, it had no effect on QoL and the effect towards physical performance remained unclear.


Subject(s)
Quality of Life , Aged , Cost-Benefit Analysis , Humans , Quality-Adjusted Life Years
13.
J Extracell Vesicles ; 10(12): e12158, 2021 10.
Article in English | MEDLINE | ID: mdl-34651466

ABSTRACT

Urinary extracellular vesicles (uEV) are a topical source of non-invasive biomarkers for health and diseases of the urogenital system. However, several challenges have become evident in the standardization of uEV pipelines from collection of urine to biomarker analysis. Here, we studied the effect of pre-analytical variables and developed means of quality control for uEV isolates to be used in transcriptomic biomarker research. We included urine samples from healthy controls and individuals with type 1 or type 2 diabetes and normo-, micro- or macroalbuminuria and isolated uEV by ultracentrifugation. We studied the effect of storage temperature (-20°C vs. -80°C), time (up to 4 years) and storage format (urine or isolated uEV) on quality of uEV by nanoparticle tracking analysis, electron microscopy, Western blotting and qPCR. Urinary EV RNA was compared in terms of quantity, quality, and by mRNA or miRNA sequencing. To study the stability of miRNA levels in samples isolated by different methods, we created and tested a list of miRNAs commonly enriched in uEV isolates. uEV and their transcriptome were preserved in urine or as isolated uEV even after long-term storage at -80°C. However, storage at -20°C degraded particularly the GC-rich part of the transcriptome and EV protein markers. Transcriptome was preserved in RNA samples extracted with and without DNAse, but read distributions still showed some differences in e.g. intergenic and intronic reads. MiRNAs commonly enriched in uEV isolates were stable and concordant between different EV isolation methods. Analysis of never frozen uEV helped to identify surface characteristics of particles by EM. In addition to uEV, qPCR assays demonstrated that uEV isolates commonly contained polyoma viruses. Based on our results, we present recommendations how to store and handle uEV isolates for transcriptomics studies that may help to expedite standardization of the EV biomarker field.


Subject(s)
Biomarkers/urine , Diabetes Mellitus/urine , Extracellular Vesicles/metabolism , Transcriptome/genetics , Adult , Case-Control Studies , Humans , Quality Control
14.
Front Cell Dev Biol ; 9: 726499, 2021.
Article in English | MEDLINE | ID: mdl-34568336

ABSTRACT

The generation of human stem cell-derived spheroids and organoids represents a major step in solving numerous medical, pharmacological, and biological challenges. Due to the advantages of three-dimensional (3D) cell culture systems and the diverse applications of human pluripotent stem cell (iPSC)-derived definitive endoderm (DE), we studied the influence of spheroid size and 3D cell culture systems on spheroid morphology and the effectiveness of DE differentiation as assessed by quantitative PCR (qPCR), flow cytometry, immunofluorescence, and computational modeling. Among the tested hydrogel-based 3D systems, we found that basement membrane extract (BME) hydrogel could not retain spheroid morphology due to dominant cell-matrix interactions. On the other hand, we found that nanofibrillar cellulose (NFC) hydrogel could maintain spheroid morphology but impeded growth factor diffusion, thereby negatively affecting cell differentiation. In contrast, suspension culture provided sufficient mass transfer and was demonstrated by protein expression assays, morphological analyses, and mathematical modeling to be superior to the hydrogel-based systems. In addition, we found that spheroid size was reversely correlated with the effectiveness of DE formation. However, spheroids of insufficient sizes failed to retain 3D morphology during differentiation in all the studied culture conditions. We hereby demonstrate how the properties of a chosen biomaterial influence the differentiation process and the importance of spheroid size control for successful human iPSC differentiation. Our study provides critical parametric information for the generation of human DE-derived, tissue-specific organoids in future studies.

15.
J Control Release ; 336: 480-498, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34214597

ABSTRACT

Freeze-drying is the most widespread method to preserve protein drugs and vaccines in a dry form facilitating their storage and transportation without the laborious and expensive cold chain. Extending this method for the preservation of natural biomaterials and cells in a dry form would provide similar benefits, but most results in the domain are still below expectations. In this review, rather than consider freeze-drying as a traditional black box we "break it" through a detailed process thinking approach. We discuss freeze-drying from process thinking aspects, introduce the chemical, physical, and mechanical environments important in this process, and present advanced biophotonic process analytical technology. In the end, we review the state of the art in the freeze-drying of the biomaterials, extracellular vesicles, and cells. We suggest that the rational design of the experiment and implementation of advanced biophotonic tools are required to successfully preserve the natural biomaterials and cells by freeze-drying. We discuss this change of paradigm with existing literature and elaborate on our perspective based on our new unpublished results.


Subject(s)
Biocompatible Materials , Proteins , Freeze Drying
16.
Molecules ; 26(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299532

ABSTRACT

Pharmacokinetic (PK) studies improve the design of dosing regimens in preclinical and clinical settings. In complex diseases like cancer, single-agent approaches are often insufficient for an effective treatment, and drug combination therapies can be implemented. In this work, in silico PK models were developed based on in vitro assays results, with the goal of predicting the in vivo performance of drug combinations in the context of cancer therapy. Combinations of reference drugs for cancer treatment, gemcitabine and 5-fluorouracil (5-FU), and repurposed drugs itraconazole, verapamil or tacrine, were evaluated in vitro. Then, two-compartment PK models were developed based on the previous in vitro studies and on the PK profile reported in the literature for human patients. Considering the quantification parameter area under the dose-response-time curve (AUCeffect) for the combinations effect, itraconazole was the most effective in combination with either reference anticancer drugs. In addition, cell growth inhibition was itraconazole-dose dependent and an increase in effect was predicted if itraconazole administration was continued (24-h dosing interval). This work demonstrates that in silico methods and AUCeffect are powerful tools to study relationships between tissue drug concentration and the percentage of cell growth inhibition over time.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Deoxycytidine/analogs & derivatives , Fluorouracil/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Computer Simulation , Deoxycytidine/pharmacokinetics , Deoxycytidine/pharmacology , Drug Combinations , Fluorouracil/pharmacokinetics , Humans , Models, Biological , Neoplasms/drug therapy , Gemcitabine
17.
Bioconjug Chem ; 32(6): 1130-1138, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33998229

ABSTRACT

An azide-functionalized 12-armed Buckminster fullerene has been monosubstituted in organic media with a substoichiometric amount of cyclooctyne-modified oligonucleotides. Exposing the intermediate products then to the same reaction (i.e., strain-promoted alkyne-azide cycloaddition, SPAAC) with an excess of slightly different oligonucleotide constituents in an aqueous medium yields molecularly defined monofunctionalized spherical nucleic acids (SNAs). This procedure offers a controlled synthesis scheme in which one oligonucleotide arm can be functionalized with labels or other conjugate groups (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, DOTA, and Alexa-488 demonstrated), whereas the rest of the 11 arms can be left unmodified or modified by other conjugate groups in order to decorate the SNAs' outer sphere. Extra attention has been paid to the homogeneity and authenticity of the C60-azide scaffold used for the assembly of full-armed SNAs.


Subject(s)
Fullerenes/chemistry , Nucleic Acids/chemistry , Alkynes/chemistry , Azides/chemistry , Catalysis , Click Chemistry , Copper/chemistry , Cycloaddition Reaction
18.
J Control Release ; 334: 367-375, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33930478

ABSTRACT

Hydrogels, natural and synthetic origin, are actively studied for their use for implants and payload carriers. These biomaterials for delivery systems have enormous potential in basic biomedical research, drug development, and long-term delivery of biologics. Nanofibrillated cellulose (NFC) hydrogels, both natural and anionic (ANFC) ones, allow drug loading for immediate and controlled release via the slow drug dissolution of solid drug crystals into hydrogel and its subsequent release. This property makes NFC originated hydrogels an interesting non-toxic and non-human origin material as drug reservoir for long-term controlled release formulation or implant for patient care. A compelling tool for studying NFC hydrogels is Raman spectroscopy, which enables to resolve the chemical structures of different molecules in a high-water content like hydrogels, since Raman spectroscopy is insensitive to water molecules. That offers real time investigation of label-free drugs and their release in high-water-content media. Despite the huge potential of Raman spectroscopy in bio-pharmaceutical applications, the strong fluorescence background of many drug samples masking the faint Raman signal has restricted the widespread use of it. In this study we used a Raman spectrometer capable of suppressing the unpleasant fluorescence background by combining a pulsed laser and time-resolved complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) line sensor for the label-free investigation of Metronidazole and Vitamin C diffusivities in ANFC. The results show the possibility to modulate the ANFC-based implants and drug delivery systems, when the release rate needs to be set to a desired value. More importantly, the now developed label free real-time method is universal and can be adapted to any hydrogel/drug combination for producing reliable drug diffusion coefficient data in complex and heterogeneous systems, where traditional sampling-based methods are cumbersome to use. The wide temporal range of the time-resolved CMOS SPAD sensors makes it possible to capture also the fluorescence decay of samples, giving rise to a combined time-resolved Raman and fluorescence spectroscopy, which provides additional information on the chemical, functional and structural changes in samples.


Subject(s)
Cellulose , Nanofibers , Drug Liberation , Hydrogels , Spectrometry, Fluorescence
19.
Nanoscale Adv ; 4(1): 226-240, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-36132960

ABSTRACT

Studies of extracellular vesicles (EVs), their trafficking and characterization often employ fluorescent labelling. Unfortunately, little attention has been paid thus far to a thorough evaluation of the purification of EVs after labelling, although the presence of an unbound dye may severely compromise the results or even lead to wrong conclusions on EV functionality. Here, we systematically studied five dyes for passive EV labelling and meticulously compared five typical purification methods: ultracentrifugation (UC), ultracentrifugation with discontinuous density gradient (UCG), ultrafiltration (UF), size exclusion chromatography (SEC), and anion exchange chromatography (AEC). A general methodology for evaluation of EV purification efficiency after the labelling was developed and tested to select the purification methods for the chosen dyes. Firstly, we found that some methods initially lead to high EV losses even in the absence of the dye. Secondly, the suitable purification method needs to be found for each particular dye and depends on the physical and chemical properties of the dye. Thirdly, we demonstrated that the developed parameter E rp (relative purification efficiency) is a useful tool for the pre-screening of the suitable dye-purification method combinations. Additionally, it was also shown that the labelled EVs properly purified from the unbound dye may show significantly reduced contrast and visibility in the target application, e.g. in the live cell fluorescence lifetime imaging.

20.
ACS Appl Bio Mater ; 4(9): 7157-7167, 2021 09 20.
Article in English | MEDLINE | ID: mdl-35006947

ABSTRACT

The diversity and safety of nanofibrillated cellulose (NFC) hydrogels have gained a vast amount of interest at the pharmaceutical site in recent years. Moreover, this biomaterial has a high potential to be utilized as a protective matrix during the freeze-drying of heat-sensitive pharmaceuticals and biologics to increase their properties for long-term storing at room temperature and transportation. Since freeze-drying and subsequent reconstitution have not been optimized for this biomaterial, we must find a wider understanding of the process itself as well as the molecular level interactions between the NFC hydrogel and the most suitable lyoprotectants. Herein we optimized the reconstitution of the freeze-dried NFC hydrogel by considering critical quality attributes required to ensure the success of the process and gained insights of the obtained experimental data by simulating the effects of the used lyoprotectants on water and NFC. We discovered the correlation between the measured characteristics and molecular dynamics simulations and obtained successful freeze-drying and subsequent reconstitution of NFC hydrogel with the presence of 300 mM of sucrose. These findings demonstrated the possibility of using the simulations together with the experimental measurements to obtain a more comprehensive way to design a successful freeze-drying process, which could be utilized in future pharmaceutical applications.


Subject(s)
Cellulose , Hydrogels , Biocompatible Materials , Freeze Drying , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...