Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 18(6): 3516-3522, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29768012

ABSTRACT

Graphene, a single atomic layer of covalently bonded carbon atoms, has been investigated intensively for optoelectronics and represents a promising candidate for high-speed electronics. Here, we present a microwave mixer constructed as an asymmetrically contacted two-terminal graphene device based on the thermoelectric effect. We report a 50 GHz (minimum) mixer bandwidth as well as 130 V/W (163 mA/W) extrinsic direct-detection responsivity. Anomalous second-harmonic generation due to self-mixing in our graphene detector is also observed. Careful investigation of the responsivity from four different approaches gives consistent results, confirming the exceptional performance of our zero-bias device operating at room temperature. The 50 GHz bandwidth indicates an extremely fast response time and our experimental results represent an encouraging advance toward practical graphene microwave devices with anticipated future applications extended through millimeter wave and terahertz frequencies.

2.
Nano Lett ; 15(8): 5295-301, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26218887

ABSTRACT

Recent intense electrical and optical studies of graphene have pushed the material to the forefront of optoelectronic research. Of particular interest is the few terahertz (THz) frequency regime where efficient light sources and highly sensitive detectors are very challenging to make. Here we present THz sources and detectors made with graphene field effect transistors (GFETs) enhanced by a double-patch antenna and an on-chip silicon lens. We report the first experimental observation of 1-3 THz radiation from graphene, as well as more than 3 orders of magnitude performance improvements in a half-edge-contacted GFET thermoelectric detector operating at ∼2 THz. The quantitative analysis of the emitting power and its unusual charge density dependence indicate significant nonthermal noise contribution from the GFET. The polarization resolved detection measurements with different illumination geometries allow for detailed and quantitative analysis of various factors that contribute to the overall detector performance. Our experimental results represent a significant advance toward practically useful graphene THz devices.

3.
Nanotechnology ; 26(32): 325201, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26202877

ABSTRACT

We provide evidence of the plasmon resonances in a number of representative 1D finite carbon-based nanostructures using first-principle computational electronic spectroscopy studies. Our special purpose real-space/real-time all-electron time-dependent density-functional theory simulator can perform excited-states calculations to obtain correct frequencies for known optical transitions, and capture various nanoscopic effects including collective plasmon excitations. The presence of 1D plasmons is universally predicted by the various numerical experiments, which also demonstrate a phenomenon of resonance splitting. For the metallic carbon nanotubes under study, the plasmons are expected to be related to the Tomonaga-Luttinger plasmons of infinitely long 1D structures. In-depth quantitative understanding of such resonances which have not been clearly identified in experiments so far, would be invaluable for future generations of nano-photonic and nano-electronic devices that employ 1D conductors.

4.
Proc SPIE Int Soc Opt Eng ; 82212012 Feb 09.
Article in English | MEDLINE | ID: mdl-24353380

ABSTRACT

In breast conservation surgery, surgeons attempt to remove malignant tissue along with a surrounding margin of healthy tissue. Subsequent pathological analysis determines if those margins are clear of malignant tissue, a process that typically requires at least one day. Only then can it be determined whether a follow-up surgery is necessary. This possibility of re-excision is undesirable in terms of reducing patient morbidity, emotional stress and healthcare. It has been shown that terahertz (THz) images of breast specimens can accurately differentiate between breast carcinoma, normal fibroglandular tissue, and adipose tissue. That study employed the Time-Domain Spectroscopy (TDS) technique. We are instead developing a new technique, Frequency-Domain Terahertz Imaging (FDTI). In this joint project between UMass/Amherst and UMass Medical School/Worcester (UMMS), we are investigating the feasibility of the FDTI technique for THz reflection imaging of breast cancer margins. Our system, which produces mechanically scanned images of size 2cm × 2cm, uses a THz gas laser. The system is calibrated with mixtures of water and ethanol and reflection coefficients as low as 1% have been measured. Images from phantoms and specimens cut from breast cancer lumpectomies at UMMS will be presented. Finally, there will be a discussion of a possible transition of this FDTI setup to a compact and inexpensive CMOS THz camera for use in the operating room.

SELECTION OF CITATIONS
SEARCH DETAIL
...