Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(12): 5022-5028, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35679580

ABSTRACT

Spin electronics is delivering a much desired combination of properties such as high speed, low power, and high device densities for the next generation of memory devices. Utilizing chiral-induced spin selectivity (CISS) effect is a promising path toward efficient and simple spintronic devices. To be compatible with state-of-the-art integrated circuits manufacturing methodologies, vapor phase methodologies for deposition of spin filtering layers are needed. Here, we present vapor phase deposition of hybrid organic-inorganic thin films with embedded chirality. The deposition scheme relies on a combination of atomic and molecular layer deposition (A/MLD) utilizing enantiomeric pure alaninol molecular precursors combined with trimethyl aluminum (TMA) and water. The A/MLD deposition method deliver highly conformal thin films allowing the fabrication of several types of nanometric scale spintronic devices. The devices showed high spin polarization (close to 100%) for 5 nm thick spin filter layer deposited by A/MLD. The procedure is compatible with common device processing methodologies.

2.
ACS Nano ; 15(3): 5574-5579, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33591720

ABSTRACT

When an electron passes through a chiral molecule, there is a high probability for correlation between the momentum and spin of the charge, thus leading to a spin polarized current. This phenomenon is known as the chiral-induced spin selectivity (CISS) effect. One of the most surprising experimental results recently demonstrated is that magnetization reversal in a ferromagnet with perpendicular anisotropy can be realized solely by chemisorbing a chiral molecular monolayer without applying any current or external magnetic field. This result raises the currently open question of whether this effect is due to the bonding event, held by the ferromagnet, or a long-time-scale effect stabilized by exchange interactions. In this work we have performed vectorial magnetic field measurements of the magnetization reorientation of a ferromagnetic layer exhibiting perpendicular anisotropy due to CISS using nitrogen-vacancy centers in diamond and followed the time dynamics of this effect. In parallel, we have measured the molecular monolayer tilt angle in order to find a correlation between the time dependence of the magnetization reorientation and the change of the tilt angle of the molecular monolayer. We have identified that changes in the magnetization direction correspond to changes of the molecular monolayer tilt angle, providing evidence for a long-time-scale characteristic of the induced magnetization reorientation. This suggests that the CISS effect has an effect over long time scales which we attribute to exchange interactions. These results offer significant insights into the fundamental processes underlying the CISS effect, contributing to the implementation of CISS in state-of-the-art applications such as spintronic and magnetic memory devices.

3.
Nano Lett ; 20(12): 8675-8681, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33185449

ABSTRACT

The technological advancement of data storage is reliant upon the continuous development of faster and denser memory with low power consumption. Recent progress in flash memory has focused on increasing the number of bits per cell to increase information density. In this work an optical multilevel spin bit, based on the chiral induced spin selectivity (CISS) effect, is developed using nanometer sized chiral quantum dots. A double quantum dot architecture is adsorbed on the active area of a Ni based Hall sensor and a nine-state readout is achieved.

4.
Sci Rep ; 3: 1845, 2013.
Article in English | MEDLINE | ID: mdl-23677142

ABSTRACT

Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.


Subject(s)
Avalanches , Colloids/chemistry , Nanoparticles/chemistry , Transistors, Electronic , Action Potentials , Computer Simulation , Equipment Design
5.
J Nanosci Nanotechnol ; 6(4): 1038-43, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16736763

ABSTRACT

We show how simple mechanical agitation of precipitated CdSe quantum dot aggregates causes partially reversible color changes (clearly visible to the eye) in the absorption spectrum of the CdSe (about 4 nm size). The color changes, which are due to changes in size quantization, are not accompanied by change in quantum dot size. This phenomenon is explained by partial deaggregation of the precipitates, leading to reduced charge overlap between neighboring dots. Shaking was shown to result in a looser aggregate structure. It is suggested that CdSO3 particles (an initial product of the CdSe formation reaction) act as weak bridges between CdSe quantum dots, mediating the interparticle interactions and allowing the deaggregation to occur on shaking.


Subject(s)
Cadmium Compounds/chemistry , Cadmium Compounds/isolation & purification , Colloids/chemistry , Crystallization/methods , Fractional Precipitation , Quantum Dots , Selenium Compounds/chemistry , Selenium Compounds/isolation & purification , Color , Molecular Conformation , Motion , Nanotechnology/methods , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...