Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (143)2019 01 09.
Article in English | MEDLINE | ID: mdl-30688298

ABSTRACT

Existing systems to measure insect emergence patterns have limitations; they are only partially automated and are limited in the maximum number of emerging insects they can detect. In order to obtain precise measurement of insect emergence, it is necessary for systems to be semi-automated and able to measure large numbers of emerging insects. We addressed these issues by designing and building a system that is automated and can measure emergence of up to 1200 insects. We modified the existing "falling-ball" system using Arduino microcontrollers to automate data collection and expand the sample size through multiple data channels. Multiple data channels enable the user to not only increase their sample size, but also allows for multiple treatments to be run simultaneously in a single experiment. Furthermore, we created an R script to automatically visualize the data as a bubble plot, while also calculating the median day and time of emergence. The current system was designed using 3D printing so the user can modify the system to be adjusted for different species of insects. The goal of this protocol is to investigate important questions in chronobiology and stress physiology, using this precise and automated system to measure insect emergence patterns.


Subject(s)
Insecta/physiology , Animals
2.
Environ Entomol ; 45(1): 245-51, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26385932

ABSTRACT

Alfalfa seed production in the northwestern United States and western Canada is heavily dependent upon the pollinating services of Megachile rotundata (F.) (Hymenoptera: Megachilidae). M. rotundata females nest in cavities either naturally occurring or in artificial nesting blocks. Because of the physical nature of the nest, M. rotundata brood may have limited to no exposure to photoperiodic cues in order to regulate important circadian functions. Therefore, various thermoperiod regimes were used to characterize the possible role of thermoperiodism in synchronizing M. rotundata adult emergence. Adult emergence was monitored using a microprocessor-controlled event logger. Incubating bees under constant 29°C and darkness resulted in an arhythmic adult emergence pattern. Exposing developing M. rotundata to a thermoperiod synchronized emergence to the beginning of the thermophase and decreased the total number of days required for all adults to emerge. The amplitude of the thermoperiod regulated the timing of peak emergence in relationship to the increase in temperature. A thermoperiod amplitude of only 2°C was sufficient to synchronize peak adult emergence to take place during the rise in temperature. Increasing the amplitude of the thermoperiod to 4 or 8°C caused a positively correlated shift in peak emergence to later in the thermophase. Brood stored under constant 29°C and darkness for different durations (May or June early in the growing season or July or August late in the growing season) or under a fluctuating thermal regime (base temperature of 6°C and daily 1-h pulse of 20°C until September or November) maintained their capacity for entraining emergence timing by thermoperiodism.


Subject(s)
Bees/growth & development , Animals , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...