Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 25(5): 912-928, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37186129

ABSTRACT

Reservoirs in arid landscapes provide critical water storage and hydroelectric power but influence the transport and biogeochemical cycling of mercury (Hg). Improved management of reservoirs to mitigate the supply and uptake of bioavailable methylmercury (MeHg) in aquatic food webs will benefit from a mechanistic understanding of inorganic divalent Hg (Hg(II)) and MeHg fate within and downstream of reservoirs. Here, we quantified Hg(II), MeHg, and other pertinent biogeochemical constituents in water (filtered and associated with particles) at high temporal resolution from 2016-2020. This was done (1) at inflow and outflow locations of three successive hydroelectric reservoirs (Snake River, Idaho, Oregon) and (2) vertically and longitudinally within the first reservoir (Brownlee Reservoir). Under spring high flow, upstream inputs of particulate Hg (Hg(II) and MeHg) and filter-passing Hg(II) to Brownlee Reservoir were governed by total suspended solids and dissolved organic matter, respectively. Under redox stratified conditions in summer, net MeHg formation in the meta- and hypolimnion of Brownlee reservoir yielded elevated filter-passing and particulate MeHg concentrations, the latter exceeding 500 ng g-1 on particles. Simultaneously, the organic matter content of particulates increased longitudinally in the reservoir (from 9-29%) and temporally with stratified duration. In late summer and fall, destratification mobilized MeHg from the upgradient metalimnion and the downgradient hypolimnion of Brownlee Reservoir, respectively, resulting in downstream export of elevated filter-passing MeHg and organic-rich particles enriched in MeHg (up to 43% MeHg). We document coupled biogeochemical and hydrologic processes that yield in-reservoir MeHg accumulation and MeHg export in water and particles, which impacts MeHg uptake in aquatic food webs within and downstream of reservoirs.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Mercury/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Methylmercury Compounds/chemistry , Water
2.
Environ Sci Technol ; 56(19): 13751-13760, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36107858

ABSTRACT

Anoxic conditions within reservoirs related to thermal stratification and oxygen depletion lead to methylmercury (MeHg) production, a key process governing the uptake of mercury in aquatic food webs. Once formed within a reservoir, the timing and magnitude of the biological uptake of MeHg and the relative importance of MeHg export in water versus biological compartments remain poorly understood. We examined the relations between the reservoir stratification state, anoxia, and the concentrations and export loads of MeHg in aqueous and biological compartments at the outflow locations of two reservoirs of the Hells Canyon Complex (Snake River, Idaho-Oregon). Results show that (1) MeHg concentrations in filter-passing water, zooplankton, suspended particles, and detritus increased in response to reservoir destratification; (2) zooplankton MeHg strongly correlated with MeHg in filter-passing water during destratification; (3) reservoir anoxia appeared to be a key control on MeHg export; and (4) biological MeHg, primarily in zooplankton, accounted for only 5% of total MeHg export from the reservoirs (the remainder being aqueous compartments). These results improve our understanding of the role of biological incorporation of MeHg and the subsequent downstream release from seasonally stratified reservoirs and demonstrate that in-reservoir physical processes strongly influence MeHg incorporation at the base of the aquatic food web.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Environmental Monitoring , Food Chain , Humans , Hypoxia , Mercury/analysis , Methylmercury Compounds/metabolism , Oxygen , Rivers , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...