Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 101(22): 221101, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-19113471

ABSTRACT

The 7 year data set of the Milagro TeV observatory contains 2.2 x 10(11) events of which most are due to hadronic cosmic rays. These data are searched for evidence of intermediate scale structure. Excess emission on angular scales of approximately 10 degrees has been found in two localized regions of unknown origin with greater than 12sigma significance. Both regions are inconsistent with pure gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at approximately 10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found.

2.
Phys Rev Lett ; 95(25): 251103, 2005 Dec 16.
Article in English | MEDLINE | ID: mdl-16384445

ABSTRACT

Gamma-ray emission from a narrow band at the galactic equator has previously been detected up to 30 GeV. We report evidence for a TeV gamma-ray signal from a region of the galactic plane by Milagro, a large-field-of-view water Cherenkov detector for extensive air showers. An excess with a significance of 4.5 standard deviations has been observed from the region of galactic longitude l E (40 degrees, 100 degrees) and latitude /b/ < 5 degrees. Under the assumption of a simple power law spectrum, with no cutoff in the EGRET-Milagro energy range, the measured integral flux is phi gamma(>3.5 TeV) = (6.4 +/- 1.4 +/- 2.1) x 10(-11) cm(-2) s(-1) sr(-1). This flux is consistent with an extrapolation of the EGRET spectrum between 1 and 30 GeV in this galactic region.

3.
Appl Opt ; 36(18): 4168-80, 1997 Jun 20.
Article in English | MEDLINE | ID: mdl-18253445

ABSTRACT

We discuss recent measurements of the wavelength-dependent absorption coefficients in deep South Pole ice. The method uses transit-time distributions of pulses from a variable-frequency laser sent between emitters and receivers embedded in the ice. At depths of 800-1000 m scattering is dominated by residual air bubbles, whereas absorption occurs both in ice itself and in insoluble impurities. The absorption coefficient increases approximately exponentially with wavelength in the measured interval 410-610 nm. At the shortest wavelength our value is approximately a factor 20 below previous values obtained for laboratory ice and lake ice; with increasing wavelength the discrepancy with previous measurements decreases. At ~415 to ~500 nm the experimental uncertainties are small enough for us to resolve an extrinsic contribution to absorption in ice: submicrometer dust particles contribute by an amount that increases with depth and corresponds well with the expected increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The laser pulse method allows remote mapping of gross structure in dust concentration as a function of depth in glacial ice.

SELECTION OF CITATIONS
SEARCH DETAIL
...