Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(51): 49270-49277, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38162780

ABSTRACT

In field-effect transistor (FET) biosensors, charge screening in electrolyte solutions limits the sensitivity, thereby restricting the applicability of FET sensors. This is particularly pronounced in graphene FET (GFET) biosensors, where the bare graphene surface possesses a strongly negative charge, which impedes the high sensitivity of GFETs owing to nonlinear electrolytic screening at the interfaces between graphene and liquid. In this study, we counteracted the negative surface charge of graphene by decorating positively charged compounds and demonstrated the sensing of C-reactive protein (CRP) with surface-charge-modulated GFETs (SCM-GFETs). We integrated multiple SCM-GFETs with anti-CRP antibodies and nonfunctionalized GFETs into a chip and measured differentials to eliminate background changes to improve measurement reliability. The FET response corresponded to the fluorescence images, which visualized the specific adsorption of CRP. The estimated dissociation constant was consistent with previously reported values; this supports the conclusion that the results are attributed to specific adsorption. Conversely, the signal in GFETs without decoration was obscured by noise because of nonlinear electrolytic screening, further emphasizing the significance of surface-charge modulation. The limit of detection of the system was determined to be 2.9 nM. This value has the potential to be improved through further optimization of the surface charges to align with specific applications. Our devices effectively circumvent nonlinear electrolytic screening, opening the door for further advancements in GFET biosensor technology.

2.
Chemistry ; 9(12): 2854-66, 2003 Jun 16.
Article in English | MEDLINE | ID: mdl-12866562

ABSTRACT

A series of zinc(II) porphyrin-imide dyads (ZP-Im), in which an electron donating ZP moiety is directly connected to an electron accepting imide moiety in the meso position, have been prepared for the examination of energy gap dependence of intramolecular electron transfer reactions with large electronic coupling. The nearly perpendicular conformation of the imide moiety towards the porphyrin plane has been revealed by Xray crystal structures. The energy gap for charge separation, 1ZP* - Im --> ZP+ - Im-, is varied by changing the electron accepting imide moiety to cover a range of about 0.8 eV in DMF. Definitive evidence for electron transfer has been obtained in three solvents (toluene, THF, and DMF) through picosecond-femtosecond transient absorption studies, which have allowed us to determine the rates of photoinduced charge separation, 1ZP* - Im --> ZP+ - Im-, and subsequent thermal charge recombination ZP+ - Im- --> ZP - Im. The free-energy gap dependence (energy gap law) has been probed from the normal to the nearly top region for the charge separation rate alone, and only the inverted region for the charge recombination rate. Although both of the energy gap dependencies can be approximately reproduced by means of the simplified semiclassical equation, when we take into consideration the effect of the high frequency vibrations replaced by one mode of averaged frequency, many features, including the effects of solvent polarity and the electron tunneling matrix element on the energy gap law, differ considerably from those of the previously studied porphyrin-quinone systems, which have weaker interchromophore electronic interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...