Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(33): e2204146119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35960845

ABSTRACT

Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts' microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.


Subject(s)
Ecosystem , Microbiota , Plants , Animals , Bacteria , Plants/microbiology
2.
Mol Ecol ; 31(15): 4176-4187, 2022 08.
Article in English | MEDLINE | ID: mdl-35699341

ABSTRACT

Pine invasions lead to losses of native biodiversity and ecosystem function, but pine invasion success is often linked to coinvading non-native ectomycorrhizal (EM) fungi. How the community composition, traits, and distributions of these fungi vary over the landscape and how this affects pine success is understudied. A greenhouse bioassay experiment was performed to test the effects of changes in EM fungal community structure from a pine plantation, to an invasion front to currently pine-free areas on percent root colonization and seedling biomass. Soils were also analysed by qPCR to determine changes in inoculum and spore density over distance for a common coinvading EM fungus, Suillus pungens. Percent colonization increased with distance from the plantation, which corresponded with an increase in seedling biomass and stark changes in EM fungal community membership where Suillus spp. dominated currently pine-free areas. However, there was a negative relationship between S. pungens inoculum potential versus root colonization over distance. We conclude that the success of pine invasions is facilitated by specific traits of Suillus spp., but that the success of Suillus is contingent on a lack of competition with other ectomycorrhizal fungi.


Subject(s)
Mycorrhizae , Pinus , Ecosystem , Hawaii , Mycorrhizae/genetics , Pinus/microbiology , Plant Roots/microbiology , Seedlings/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...