Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Methods ; 311: 377-384, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30243994

ABSTRACT

BACKGROUND: Tremor is a debilitating symptom of Multiple Sclerosis (MS). Little is known about its pathophysiology and treatments are limited. Clinical trials investigating new interventions often rely on subjective clinical rating scales to provide supporting evidence of efficacy. NEW METHOD: We present a novel instrument (TREMBAL) which uses electromagnetic motion capture technology to quantify MS tremor. We aim to validate TREMBAL by comparison to clinical ratings using regression modelling with 310 samples of tremor captured from 13 MS participants who performed five different hand exercises during several follow-up visits. Minimum detectable change (MDC) and test-retest reliability were calculated and comparisons were made between MS tremor and data from 12 healthy volunteers. RESULTS: Velocity of the index finger was most congruent with clinical observation. Regression modelling combining different features, sensor configurations, and labelling exercises did not improve results. TREMBAL MDC was 84% of its initial measurement compared to 91% for the clinical rating. Intra-class correlations for test-retest reliability were 0.781 for TREMBAL and 0.703 for clinical ratings. Tremor was lower (p = 0.002) in healthy subjects. COMPARISON WITH EXISTING METHODS: Subjective scales have low sensitivity, suffer from ceiling effects, and mitigation against inter-rater variability is challenging. Inertial sensors are ubiquitous, however, their output is nonlinearly related to tremor frequency, compensation is required for gravitational artefacts, and their raw data cannot be intuitively comprehended. CONCLUSIONS: TREMBAL, compared with clinical ratings, gave measures in agreement with clinical observation, had marginally lower MDC, and similar test-retest reliability.


Subject(s)
Multiple Sclerosis/complications , Tremor/diagnostic imaging , Biomechanical Phenomena , Electromagnetic Phenomena , Female , Hand/physiopathology , Humans , Male , Middle Aged , Reproducibility of Results , Tremor/etiology , Tremor/physiopathology
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5089-5092, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441485

ABSTRACT

Motor imagery (MI) based Brain-Computer Interfaces (BCIs) are a viable option for giving locked-in syndrome patients independence and communicability. BCIs comprising expensive medical-grade EEG systems evaluated in carefully-controlled, artificial environments are impractical for take-home use. Previous studies evaluated low-cost systems; however, performance was suboptimal or inconclusive. Here we evaluated a low-cost EEG system, OpenBCI, in a natural environment and leveraged neurofeedback, deep learning, and wider temporal windows to improve performance. $\mu-$rhythm data collected over the sensorimotor cortex from healthy participants performing relaxation and right-handed MI tasks were used to train a multi-layer perceptron binary classifier using deep learning. We showed that our method outperforms previous OpenBCI MI-based BCIs, thereby extending the BCI capabilities of this low-cost device.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Humans , Imagery, Psychotherapy , Imagination , Neurofeedback
3.
Physiol Meas ; 37(9): 1516-27, 2016 09.
Article in English | MEDLINE | ID: mdl-27511464

ABSTRACT

Tremor is characterized commonly through subjective clinical rating scales. Accelerometer-based techniques for objective tremor measurement have been developed in the past, yet these measures are usually presented as an unintuitive dimensionless index without measurement units. Here we have developed a tool (TREMBAL) to provide quantifiable and objective measures of tremor severity using electromagnetic motion tracking. We aimed to compare TREMBAL's objective measures with clinical tremor ratings and determine the test-retest reliability of our technique. Eight participants with ET receiving deep brain stimulation (DBS) therapy were consented. Tremor was simultaneously recorded using TREMBAL and video during DBS adjustment. After each adjustment, participants performed a hands-outstretched task (for postural tremor) and a finger-nose task (for kinetic tremor). Video recordings were de-identified, randomized, and shown to a panel of movement disorder specialists to obtain their ratings. Regression analysis and Pearson's correlations were used to determine agreement between datasets. Subsets of the trial were repeated to assess test-retest reliability. Tremor amplitude and velocity measures were in close agreement with mean clinical ratings (r > 0.90) for both postural and kinetic tremors. Test-retest reliability for both translational and rotational components of tremor showed intra-class correlations >0.80. TREMBAL assessments showed that tremor gradually improved with increasing DBS therapy-this was also supported by clinical observation. TREMBAL measurements are a sensitive, objective and reliable assessment of tremor severity. This tool may have application in clinical trials and in aiding automated optimization of deep brain stimulation.


Subject(s)
Deep Brain Stimulation , Electromagnetic Phenomena , Essential Tremor/diagnosis , Essential Tremor/therapy , Adult , Aged , Essential Tremor/physiopathology , Female , Humans , Male , Middle Aged , Movement
4.
Med Biol Eng Comput ; 54(2-3): 333-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26018757

ABSTRACT

Since the advent of electromyogram recording, precise measures of tremor and gait have been used to study movement disorders such as Parkinson's disease. Now, a wide range of accelerometers and other motion-tracking technologies exist to better inform researchers and clinicians, yet such systems are rarely tested for accuracy or suitability before use. Our inexpensive test-rig can produce sinusoidal displacements using a simple cantilever system driven by a subwoofer. Controlled sinusoids were generated using computer software, and the displacement amplitudes of the test-rig were verified with fiducial marker tracking. To illustrate the use of the test-rig, we evaluated an accelerometer and an electromagnetic motion tracker. Accelerometry recordings were accurate to within ±0.09 g of actual peak-to-peak amplitude with a frequency response close to unity gain between 1 and 20 Hz. The electromagnetic sensor underestimated peak displacement by 2.68 mm, which was largely due to a diminishing gain with increasing frequency. Both sensors had low distortion. Overall sensitivity was limited by noise for the accelerometer and quantisation resolution for the electromagnetic sensor. Our simple and low-cost test-rig can be used to bench-test sensors used in movement disorders research. It was able to produce reliable sinusoidal displacements and worked across the 1- to 20-Hz frequency range.


Subject(s)
Motion , Movement Disorders/diagnosis , Physiology/economics , Physiology/instrumentation , Accelerometry/instrumentation , Computer Simulation , Humans , Research
SELECTION OF CITATIONS
SEARCH DETAIL
...