Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(12): 14406-14418, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559957

ABSTRACT

An understanding of the nature of molecular interactions among the ion pairs of 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide [EMI[FSI]] can offer a starting point and significant insight into the more dynamic and multiple interactions within the bulk liquid state. In this context, close inspection of ion pair conformers can offer insight into the effects in bulk [EMI][FSI] liquid. The current work, therefore, gives a detailed analysis of the [EMI][FSI] ion pair conformers through analysis of the interaction energies, stabilization energies, and natural orbital of the ion pair conformers. The structures of the cations, anions, and cation-anion ion pairs of the conformers are optimized systematically by the ωB97X-D method with the DGDZVP basis sets, considering both the empirical dispersion corrections and the presence of a polar solvent, and the most stable geometries are obtained. The [FSI]- anions, unlike [TFSI]- anions, exist at the top position with respect to imidazolium rings. The presence of out-of-plane interactions between the [EMI]+ and [FSI]- ions is in good agreement with the stronger interactions of the [FSI]- anions with alkyl group hydrogens. The presence of out-of-plane conformers could also be related to the interaction of the anion with the π clouds of the [EMI]+ ring. In the [EMI]+ cation, the aromatic ring is π-acidic due to the presence of a positive charge in the N1-C1-N2 ring, which leads to the presence of [FSI]- anion donor [EMI]+ π-acceptor type interactions. The [EMI]+ cation and [FSI]- anions tend to form multiple σ* and π* interactions but reduce the strength of the individual contributions from a potential (linear) maximum. For the ion pair [EMI][FSI], the absolute value of the interaction energies is lower than the normal hydrogen bond energy (50 kJ/mol), which indicates that there is a very weak electrostatic interaction between the [EMI]+ cations and [FSI]- anions. The weaker attraction between the [EMI]+ and [FSI]- ions is suggested to contribute to the larger diffusion coefficients of the ions.

2.
ACS Omega ; 9(2): 2674-2686, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250358

ABSTRACT

The development of ambient-air-processable organic-inorganic halide perovskite solar cells (OIHPSCs) is a challenge necessary for the transfer of laboratory-scale technology to large-scale and low-cost manufacturing of such devices. Different approaches like additives, antisolvents, composition engineering, and different deposition techniques have been employed to improve the morphology of the perovskite films. Additives that can form Lewis acid-base adducts are known to minimize extrinsic impacts that trigger defects in ambient air. In this work, we used the 3-thiophenemalonic acid (3-TMA) additive, which possesses thiol and carboxyl functional groups, to convert PbI2, PbCl2, and CH3NH3I to CH3NH3PbI3 completely. This strategy is effective in regulating the kinetics of crystallization and improving the crystallinity of the light-absorbing layer under high relative humidity (RH) conditions (30-50%). As a result, the 3-TMA additive increases the yield of the power conversion efficiency (PCE) from 14.9 to 16.5% and its stability under the maximum power point. Finally, we found that the results of this work are highly relevant and provide additional inputs to the ongoing research progress related to additive engineering as one of the efficient strategies to reduce parasitic recombination and enhance the stability of inverted OIHPSCs in ambient environment processing.

3.
Chemosphere ; 302: 134706, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35523291

ABSTRACT

The hybrid electrocoagulation-electrooxidation (EC-EO) process was evaluated for its capability to remove color, total organic carbon (TOC), and chemical oxygen demand (COD). Aluminum (Al/Al) and iridium dioxide-coated onto titanium (IrO2/Ti) electrodes were selected as anode/cathode for EC and EC-EO experiments, respectively. The box-Behnken statistical experimental design was used to optimize different operating conditions of the processes. The selected EC operating parameters are the concentrated dye concentration, applied current density, electrolysis time, and pH. The three chosen operating conditions for hybrid EC- EO processes are applied current density, pH, and electrolysis time. The results were evaluated based on the interaction effects of operating parameters of the treatment methods on the percentage of COD, TOC, and color removal. The EC process achieved 89% color and 76% COD removal rate at the optimum operating conditions. Likewise, the hybrid EC-EO process obtained 97% COD and color removal efficiency. FT-IR and 1H and 13C NMR spectroscopy combined approach was employed to analyze the dye degradation extent. Both analysis results confirm the complete degradation of the organic contaminants into carbon dioxide and water. Thus, this study discloses that the treatment method using mesh IrO2/Ti electrodes is a promising technology that could reach the discharge limit for industrial effluents. In addition, the optimum operating conditions are tested for real industrial wastewater effluents and show excellent performance in removing pollutants. Furthermore, the treatment method's mineralization study and economic analysis were performed and compared to other studies.


Subject(s)
Wastewater , Water Pollutants, Chemical , Electrochemical Techniques/methods , Electrocoagulation/methods , Electrodes , Industrial Waste/analysis , Spectroscopy, Fourier Transform Infrared , Textile Industry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis
4.
Water Sci Technol ; 85(5): 1549-1567, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35290231

ABSTRACT

In this study, the performance of the electrocoagulation (EC) process was evaluated for its capability to remove color, total organic carbon (TOC), chemical oxygen demand (COD) using aluminium electrodes. Response surface methodology based on Box-Behnken design was used to optimize different operating conditions of the processes. The interaction effects of four independent variables such as dye concentration, applied current density, electrolysis time, and pH on the percentage of COD, TOC, and color removal were investigated by the EC process. ANOVA analysis was made to examine the significance of input parameters and their interaction effect on responses. At the optimum operating conditions, 89% of color, 47% of TOC, and 76% of COD removal rate were achieved using the EC process. Different research works have been reported on the treatment of textile wastewater by the EC process. However, these researches vary regarding working conditions such as dye type, concentration, current density, pH, electrolysis time, and electrode type. Also, most literature focuses mainly on the performance of the technology. However, it is also important to investigate the economic aspect, removal mechanism, and mineralization study. Thus, economic analyses, mineralization, kinetic, sludge characterization studies of the technology were performed.


Subject(s)
Textile Industry , Water Purification , Electrocoagulation , Gossypium , Textiles
5.
Phys Chem Chem Phys ; 11(29): 6283-8, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19606341

ABSTRACT

In situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroelectrochemistry during oxidation (p-doping) and reduction (n-doping) of three phenyl-substituted polythiophenes, namely POPT, PEOPT and POMeOPT is presented. All the three phenyl substituted polythiophenes show both n- and p-doping. The infrared active vibration (IRAV) patterns obtained during electrochemical oxidation (p-doping) and reduction (n-doping) are compared. HOMO and LUMO energy levels are estimated from cyclic voltammetric experiments and from IRAV patterns during oxidation and reduction. A comparison shows that the standard graphical procedure to determine the onset of oxidation and reduction peaks in the cyclic voltammogram can be improved using in situ spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...