Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
2.
Sci Transl Med ; 12(574)2020 12 16.
Article in English | MEDLINE | ID: mdl-33328330

ABSTRACT

Precise form-fitting of prosthetic sockets is important for the comfort and well-being of persons with limb amputations. Capabilities for continuous monitoring of pressure and temperature at the skin-prosthesis interface can be valuable in the fitting process and in monitoring for the development of dangerous regions of increased pressure and temperature as limb volume changes during daily activities. Conventional pressure transducers and temperature sensors cannot provide comfortable, irritation-free measurements because of their relatively rigid construction and requirements for wired interfaces to external data acquisition hardware. Here, we introduce a millimeter-scale pressure sensor that adopts a soft, three-dimensional design that integrates into a thin, flexible battery-free, wireless platform with a built-in temperature sensor to allow operation in a noninvasive, imperceptible fashion directly at the skin-prosthesis interface. The sensor system mounts on the surface of the skin of the residual limb, in single or multiple locations of interest. A wireless reader module attached to the outside of the prosthetic socket wirelessly provides power to the sensor and wirelessly receives data from it, for continuous long-range transmission to a standard consumer electronic device such as a smartphone or tablet computer. Characterization of both the sensor and the system, together with theoretical analysis of the key responses, illustrates linear, accurate responses and the ability to address the entire range of relevant pressures and to capture skin temperature accurately, both in a continuous mode. Clinical application in two prosthesis users demonstrates the functionality and feasibility of this soft, wireless system.


Subject(s)
Artificial Limbs , Electric Power Supplies , Prosthesis Design , Skin , Temperature
3.
PLoS One ; 15(8): e0237841, 2020.
Article in English | MEDLINE | ID: mdl-32813733

ABSTRACT

To function effectively, a lower limb prosthetic socket must remain securely coupled to the residual limb during walking, running and other activities of daily living; this coupling is referred to as suspension. When this coupling is insufficient longitudinal pistoning of the socket relative to the residual limb occurs. Increasing friction of the socket/liner interface may improve socket suspension and textured sockets may be fabricated relatively easily with 3D printing. The aim of this study was to investigate longitudinal displacement of sockets with different types of textures under two suspension conditions: passive suction and active vacuum. In order to do this, we developed a mock residual limb and mechanical testing protocol. Prosthetic sockets, 14 textured sockets and an Original Squirt-Shape (OSS) Socket, were fabricated from polypropylene copolymer using the Squirt-Shape™ 3D Printer and compared to a smooth socket thermoformed from polypropylene copolymer. Sockets were mounted onto a dual durometer mock residual limb and subjected to four levels of distraction forces (100 N, 250 N, 500 N and 650 N) using a hydraulic material testing system. There was a statistically significant three-way interaction between suspension, force level and texture (p < 0.0005). Longitudinal displacements between textured and reference sockets, for all force levels and both suspension conditions, were significantly different (p < 0.0005). Using these newly developed mechanical testing protocols, it was demonstrated that texturing of polypropylene copolymer sockets fabricated using Squirt-Shape significantly decreased longitudinal displacements compared to a smooth socket. However, none of the novel textured sockets significantly reduced longitudinal displacement compared to the OSS socket under passive suction suspension.


Subject(s)
Lower Extremity/physiology , Materials Testing , Mechanical Phenomena , Prosthesis Design , Image Processing, Computer-Assisted , Suction , Vacuum
4.
PLoS One ; 15(6): e0233148, 2020.
Article in English | MEDLINE | ID: mdl-32525868

ABSTRACT

Creating a secure and comfortable linkage between the residual limb and prosthetic socket in persons with lower limb amputation is a critical factor for successful rehabilitation, including ambulation and other activities of daily living. Unwanted rotation within the socket can be a clinical problem for prosthesis users. One way of addressing issues experienced with transverse plane control of the socket may be through increased friction interface forces. It has been proposed that friction at the residual limb/socket interface may be increased by adding texture to interface components. Three-dimensional (3D) printing may be used to fabricate sockets with texture patterns added to the inner socket surface. Hence, the aim of this study was to investigate the effects of socket texturing on transverse plane rotation of the socket on a mock residual limb under two suspension conditions: passive suction and active vacuum. To conduct this study, we developed a mechanical testing protocol as no standardized tests currently exist to assess prosthetic sockets. Sockets with 14 different texture patterns were fabricated using the Squirt-Shape™ 3D printer. Textured sockets were compared to an Original Squirt-Shape (OSS) socket and a smooth thermoformed socket. Sockets were fitted with a mock residual limb and bi-axially loaded to 350 N compression with simultaneous rotation (2.5°, 5° and 7.5°) using a custom rotation assembly attached to a uniaxial hydraulic material testing system. There was a statistically significant three-way interaction between suspension, angle and texture (p < 0.0005). Torques between textured and reference sockets, for all rotation angles and both suspension conditions, were significantly different (p < 0.0005). Using newly developed testing protocols, it was demonstrated that some texture patterns significantly increased torque (i.e., resistance against unwanted rotation) in the transverse plane compared to both OSS and smooth sockets, especially for passive suction. Rotation testing of sockets may provide insight into socket design to improve suspension in the transverse plane.


Subject(s)
Friction/physiology , Materials Testing/methods , Prosthesis Design/methods , Artificial Limbs/adverse effects , Humans , Mechanical Phenomena , Pressure , Prosthesis Fitting/methods , Rotation , Weight-Bearing/physiology
5.
Prosthet Orthot Int ; 42(6): 620-625, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29775131

ABSTRACT

BACKGROUND:: This case study represented a unique opportunity wherein a long-time user of sub-ischial sockets had kept nearly every socket he wore for a decade. This individual let us borrow these sockets so we could digitize them and indirectly assess change in residual limb size over time by calculating changes in socket volume and circumferences over time. CASE DESCRIPTION AND METHODS:: Over a decade, the subject maintained a relatively stable body weight of 84-88 kg and received nine sub-ischial sockets. The internal surface of each socket was scanned using a mechanical digitizer and volume and circumferences calculated. FINDINGS AND OUTCOMES:: Socket volume increased 31.3%, from a low of 2659.2 cm3 for the oldest socket to a high of 3490.6 cm3 for the most recent socket. Proximal circumferences increased more than distal circumferences with a 15.9% total increase proximally versus 8.9% total increase distally. DISCUSSION AND CONCLUSION:: The results suggest that this individual's residual limb increased in size over time despite the compressive effect of the socket and liner. In addition, the increase in circumference was greater proximally than distally, which is where the remaining muscle bellies are located. CLINICAL RELEVANCE: This case study provides insight into the long-term effect of the sub-ischial socket on residual limb volume given compression of the soft tissues by the socket system.


Subject(s)
Amputation Stumps/pathology , Artificial Limbs , Lower Extremity , Prosthesis Design , Prosthesis Fitting , Adult , Humans , Male , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...