Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Pediatr Neurol ; 156: 66-71, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733856

ABSTRACT

BACKGROUND: Neurofibromatosis type 1 (NF1) is a multisystemic autosomal dominant disorder that includes intracranial lesions such as unidentified bright objects (UBOs)-areas of increased T2 signal on magnetic resonance imaging (MRI)-and tumors known as gliomas. The presence of these lesions in the corpus callosum (CC) has not been previously studied in a large cohort. METHODS: We reviewed medical records of 681 patients (aged three months to 86 years) followed at our institution from 2000 to 2023 with NF1 and one or more brain MRI. Patients with lesions in the CC were identified, and RAPNO/RANO criteria were used to determine changes in size over time, where a change of 25% in the product of perpendicular measurements indicates growth or shrinkage. RESULTS: Forty-seven patients had CC UBOs, most of which were in the splenium (66.0%). Seventeen patients had CC gliomas (10% of those with any glioma), two of whom had two gliomas. Seventeen of 19 gliomas were in the splenium. Over follow-up, eight of 19 remained stable, three shrunk, and eight grew. The mean percentage change in the product of the dimensions was 311.5% (ranging from -46.7% to 2566.6%). Of the eight lesions that grew, one required treatment. CONCLUSIONS: There is a 6.9% and 2.5% prevalence of CC UBOs and gliomas, respectively, in our cohort of patients with NF1. Most lesions are present in the splenium, and although some gliomas demonstrate significant growth, they rarely require treatment. This work is the largest series of CC lesions in NF1 and adds to the growing data to inform appropriate follow-up.


Subject(s)
Brain Neoplasms , Corpus Callosum , Glioma , Magnetic Resonance Imaging , Neurofibromatosis 1 , Humans , Neurofibromatosis 1/diagnostic imaging , Neurofibromatosis 1/complications , Neurofibromatosis 1/pathology , Child , Child, Preschool , Adolescent , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Male , Female , Infant , Adult , Young Adult , Glioma/diagnostic imaging , Glioma/pathology , Middle Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/complications , Aged , Aged, 80 and over , Retrospective Studies
2.
Clin Cancer Res ; 29(18): 3744-3758, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37432984

ABSTRACT

PURPOSE: Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGFß coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN: ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis, were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS: ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma-circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS: Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.


Subject(s)
Nerve Sheath Neoplasms , Neurofibrosarcoma , Humans , Biomarkers , Cell Line, Tumor , Endoglin/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Signal Transduction
3.
Genet Med ; 25(2): 100324, 2023 02.
Article in English | MEDLINE | ID: mdl-36565307

ABSTRACT

PURPOSE: People with pre-existing conditions may be more susceptible to severe COVID-19 when infected by SARS-CoV-2. The relative risk and severity of SARS-CoV-2 infection in people with rare diseases such as neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), or schwannomatosis (SWN) is unknown. METHODS: We investigated the proportions of people with NF1, NF2, or SWN in the National COVID Cohort Collaborative (N3C) electronic health record data set who had a positive test result for SARS-CoV-2 or COVID-19. RESULTS: The cohort sizes in N3C were 2501 (NF1), 665 (NF2), and 762 (SWN). We compared these with N3C cohorts of patients with other rare diseases (98-9844 individuals) and the general non-NF population of 5.6 million. The site- and age-adjusted proportion of people with NF1, NF2, or SWN who had a positive test result for SARS-CoV-2 or COVID-19 (collectively termed positive cases) was not significantly higher than in individuals without NF or other selected rare diseases. There were no severe outcomes reported in the NF2 or SWN cohorts. The proportion of patients experiencing severe outcomes was no greater for people with NF1 than in cohorts with other rare diseases or the general population. CONCLUSION: Having NF1, NF2, or SWN does not appear to increase the risk of being SARS-CoV-2 positive or of being a patient with COVID-19 or of developing severe complications from SARS-CoV-2.


Subject(s)
COVID-19 , Neurofibromatoses , Neurofibromatosis 1 , Neurofibromatosis 2 , Humans , Neurofibromatosis 2/complications , Neurofibromatosis 2/epidemiology , Neurofibromatosis 1/complications , Neurofibromatosis 1/epidemiology , Rare Diseases , COVID-19/complications , SARS-CoV-2 , Neurofibromatoses/complications , Neurofibromatoses/epidemiology
4.
Neuro Oncol ; 24(11): 1845-1856, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35788692

ABSTRACT

The wide variety of clinical manifestations of the genetic syndrome neurofibromatosis type 1 (NF1) are driven by overactivation of the RAS pathway. Mitogen-activated protein kinase kinase inhibitors (MEKi) block downstream targets of RAS. The recent regulatory approvals of the MEKi selumetinib for inoperable symptomatic plexiform neurofibromas in children with NF1 have made it the first medical therapy approved for this indication in the United States, the European Union, and elsewhere. Several recently published and ongoing clinical trials have demonstrated that MEKi may have potential benefits for a variety of other NF1 manifestations, and there is broad interest in the field regarding the appropriate clinical use of these agents. In this review, we present the current evidence regarding the use of existing MEKi for a variety of NF1-related manifestations, including tumor (neurofibromas, malignant peripheral nerve sheath tumors, low-grade glioma, and juvenile myelomonocytic leukemia) and non-tumor (bone, pain, and neurocognitive) manifestations. We discuss the potential utility of MEKi in related genetic conditions characterized by overactivation of the RAS pathway (RASopathies). In addition, we review practical treatment considerations for the use of MEKi as well as provide consensus recommendations regarding their clinical use from a panel of experts.


Subject(s)
Mitogen-Activated Protein Kinase Kinases , Neurofibroma, Plexiform , Neurofibromatosis 1 , Protein Kinase Inhibitors , Child , Humans , Consensus , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neurofibroma, Plexiform/drug therapy , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/pathology , Protein Kinase Inhibitors/pharmacology
5.
Neuro Oncol ; 24(11): 1827-1844, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35657359

ABSTRACT

Plexiform Neurofibromas (PN) are a common manifestation of the genetic disorder neurofibromatosis type 1 (NF1). These benign nerve sheath tumors often cause significant morbidity, with treatment options limited historically to surgery. There have been tremendous advances over the past two decades in our understanding of PN, and the recent regulatory approvals of the MEK inhibitor selumetinib are reshaping the landscape for PN management. At present, there is no agreed upon PN definition, diagnostic evaluation, surveillance strategy, or clear indications for when to initiate treatment and selection of treatment modality. In this review, we address these questions via consensus recommendations from a panel of multidisciplinary NF1 experts.


Subject(s)
Nerve Sheath Neoplasms , Neurofibroma, Plexiform , Neurofibromatosis 1 , Humans , Neurofibroma, Plexiform/pathology , Neurofibromatosis 1/pathology , Protein Kinase Inhibitors
6.
Genet Med ; 24(9): 1967-1977, 2022 09.
Article in English | MEDLINE | ID: mdl-35674741

ABSTRACT

PURPOSE: Neurofibromatosis type 2 (NF2) and schwannomatosis (SWN) are genetically distinct tumor predisposition syndromes with overlapping phenotypes. We sought to update the diagnostic criteria for NF2 and SWN by incorporating recent advances in genetics, ophthalmology, neuropathology, and neuroimaging. METHODS: We used a multistep process, beginning with a Delphi method involving global disease experts and subsequently involving non-neurofibromatosis clinical experts, patients, and foundations/patient advocacy groups. RESULTS: We reached consensus on the minimal clinical and genetic criteria for diagnosing NF2 and SWN. These criteria incorporate mosaic forms of these conditions. In addition, we recommend updated nomenclature for these disorders to emphasize their phenotypic overlap and to minimize misdiagnosis with neurofibromatosis type 1. CONCLUSION: The updated criteria for NF2 and SWN incorporate clinical features and genetic testing, with a focus on using molecular data to differentiate the 2 conditions. It is likely that continued refinement of these new criteria will be necessary as investigators study the diagnostic properties of the revised criteria and identify new genes associated with SWN. In the revised nomenclature, the term "neurofibromatosis 2" has been retired to improve diagnostic specificity.


Subject(s)
Neurilemmoma , Neurofibromatoses , Neurofibromatosis 1 , Neurofibromatosis 2 , Skin Neoplasms , Consensus , Humans , Neurilemmoma/diagnosis , Neurilemmoma/genetics , Neurilemmoma/pathology , Neurofibromatoses/diagnosis , Neurofibromatoses/genetics , Neurofibromatosis 1/genetics , Neurofibromatosis 2/diagnosis , Neurofibromatosis 2/genetics , Skin Neoplasms/genetics
7.
Neurosurg Focus ; 52(5): E7, 2022 05.
Article in English | MEDLINE | ID: mdl-35535821

ABSTRACT

OBJECTIVE: Neurofibromatosis type 1 (NF1) dystrophic scoliosis is an early-onset, rapidly progressive multiplanar deformity. There are few studies on the surgical management of this patient population. Specifically, perioperative morbidity, instrument-related complications, and quality-of-life outcomes associated with surgical management have not been systematically evaluated. In this study, the authors aimed to perform a systematic review on the natural history, management options, and surgical outcomes in patients who underwent NF1 dystrophic scoliosis surgery. METHODS: A PubMed search for articles with "neurofibromatosis" and either "dystrophic" or "scoliosis" in the title or abstract was performed. Articles with 10 or more patients undergoing surgery for NF1 dystrophic scoliosis were included. Data regarding indications, treatment details, morbidity, and outcomes were summarized and analyzed with descriptive statistics. RESULTS: A total of 310 articles were identified, 48 of which were selected for full-text review; 30 studies describing 761 patients met the inclusion criteria. The mean age ranged from 7 to 22 years, and 99.7% of patients were younger than 18 years. The mean preoperative coronal Cobb angle was 75.2°, and the average correction achieved was 40.3°. The mean clinical follow-up in each study was at least 2 years (range 2.2-19 years). All patients underwent surgery with the intent of deformity correction. The scoliosis regions addressed were thoracic curves (69.6%) and thoracolumbar (11.1%) and lumbar (14.3%) regions. The authors reported on a variety of approaches: posterior-only, combined anterior-posterior, and growth-friendly surgery. For fixation techniques, 42.5% of patients were treated with hybrid constructs, 51.5% with pedicle screw-only constructs, and 6.0% with hook-based constructs. Only 0.9% of patients underwent a vertebral column resection. The nonneurological complication rate was 14.0%, primarily dural tears and wound infections. The immediate postoperative neurological deficit rate was 2.1%, and the permanent neurological deficit rate was 1.2%. Ultimately, 21.5% required revision surgery, most commonly for implant-related complications. Loss of correction in both the sagittal and coronal planes commonly occurred at follow-up. Five papers supplied validated patient-reported outcome measures, showing improvement in the mental health, self-image, and activity domains. CONCLUSIONS: Data on the surgical outcomes of dystrophic scoliosis correction are heterogeneous and sparse. The perioperative complication rate appears to be high, although reported rates of neurological deficits appear to be lower than clinically observed and may be underreported. The incidence of implant-related failures requiring revision surgery is high. There is a great need for multicenter prospective studies of this complex type of deformity.


Subject(s)
Neurofibromatosis 1 , Scoliosis , Spinal Fusion , Adolescent , Adult , Child , Humans , Multicenter Studies as Topic , Neurofibromatosis 1/complications , Neurofibromatosis 1/diagnostic imaging , Neurofibromatosis 1/surgery , Postoperative Complications , Prospective Studies , Retrospective Studies , Scoliosis/complications , Scoliosis/diagnostic imaging , Scoliosis/surgery , Spinal Fusion/methods , Thoracic Vertebrae/surgery , Treatment Outcome , Young Adult
8.
Orphanet J Rare Dis ; 17(1): 44, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35144646

ABSTRACT

INTRODUCTION: The neurofibromatoses (NF) are a group of rare, genetic diseases sharing a predisposition to develop multiple benign nervous system tumors. Given the wide range of NF symptoms and medical specialties involved in NF care, we sought to evaluate the level of awareness of, and agreement with, published NF clinical guidelines among NF specialists in the United States. METHODS: An anonymous, cross-sectional, online survey was distributed to U.S.-based NF clinicians. Respondents self-reported demographics, practice characteristics, awareness of seven NF guideline publications, and level of agreement with up to 40 individual recommendations using a 5-point Likert scale. We calculated the proportion of recommendations that each clinician rated "strongly agree", and assessed for differences in guideline awareness and agreement by respondent characteristics. RESULTS: Sixty-three clinicians (49% female; 80% academic practice) across > 8 medical specialties completed the survey. Awareness of each guideline publication ranged from 53%-79% of respondents; specialists had higher awareness of publications endorsed by their medical professional organization (p < 0.05). The proportion of respondents who "strongly agree" with individual recommendations ranged from 17%-83%; for 16 guidelines, less than 50% of respondents "strongly agree". There were no significant differences in overall agreement with recommendations based on clinicians' gender, race, specialty, years in practice, practice type (academic/private practice/other), practice location (urban/suburban/rural), or involvement in NF research (p > 0.05 for all). CONCLUSIONS: We identified wide variability in both awareness of, and agreement with, published NF care guidelines among NF experts. Future quality improvement efforts should focus on evidence-based, consensus-driven methods to update and disseminate guidelines across this multi-specialty group of providers. Patients and caregivers should also be consulted to proactively anticipate barriers to accessing and implementing guideline-driven care. These recommendations for improving guideline knowledge and adoption may also be useful for other rare diseases requiring multi-specialty care coordination.


Subject(s)
Neurofibromatoses , Neurofibromatosis 1 , Cross-Sectional Studies , Female , Humans , Male , Neurofibromatosis 1/pathology , Quality Improvement , Rare Diseases , United States
9.
Neurology ; 97(7 Suppl 1): S99-S110, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34230196

ABSTRACT

OBJECTIVE: To determine a suitable outcome measure for assessing muscle strength in neurofibromatosis (NF) type 1 and NF2 clinical trials, we evaluated the intraobserver reliability of handheld dynamometry (HHD) and developed consensus recommendations for its use in NF clinical trials. METHODS: Patients ≥5 years of age with weakness in at least 1 muscle group by manual muscle testing (MMT) were eligible. Maximal isometric muscle strength of a weak muscle group and the biceps of the dominant arm was measured by HHD. An average of 3 repetitions per session was used as an observation, and 3 sessions with rest period between each were performed on the same day by a single observer. Intrasession and intersession intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) were calculated to assess reliability and measurement error. RESULTS: Twenty patients with NF1 and 13 with NF2 were enrolled; median age was 12 years (interquartile range [IQR] 9-17 years) and 29 years (IQR 22-38 years), respectively. By MMT, weak muscle strength ranged from 2-/5 to 4+/5. Biceps strength was 5/5 in all patients. Intersession ICCs for the weak muscles were 0.98 and 0.99 in the NF1 and NF2 cohorts, respectively, and for biceps were 0.97 and 0.97, respectively. The median CVs for average session strength were 5.4% (IQR 2.6%-7.3%) and 2.9% (IQR 2.0%-6.2%) for weak muscles and biceps, respectively. CONCLUSION: HHD performed by a trained examiner with a well-defined protocol is a reliable technique to measure muscle strength in NF1 and NF2. Recommendations for strength testing in NF1 and NF2 trials are provided.


Subject(s)
Isometric Contraction/physiology , Muscle Strength/physiology , Muscle Weakness/physiopathology , Muscle, Skeletal/physiology , Adolescent , Adult , Child , Humans , Male , Middle Aged , Muscle Strength Dynamometer , Muscle Weakness/diagnosis , Neurofibromatoses/physiopathology
10.
Genet Med ; 23(8): 1506-1513, 2021 08.
Article in English | MEDLINE | ID: mdl-34012067

ABSTRACT

PURPOSE: By incorporating major developments in genetics, ophthalmology, dermatology, and neuroimaging, to revise the diagnostic criteria for neurofibromatosis type 1 (NF1) and to establish diagnostic criteria for Legius syndrome (LGSS). METHODS: We used a multistep process, beginning with a Delphi method involving global experts and subsequently involving non-NF experts, patients, and foundations/patient advocacy groups. RESULTS: We reached consensus on the minimal clinical and genetic criteria for diagnosing and differentiating NF1 and LGSS, which have phenotypic overlap in young patients with pigmentary findings. Criteria for the mosaic forms of these conditions are also recommended. CONCLUSION: The revised criteria for NF1 incorporate new clinical features and genetic testing, whereas the criteria for LGSS were created to differentiate the two conditions. It is likely that continued refinement of these new criteria will be necessary as investigators (1) study the diagnostic properties of the revised criteria, (2) reconsider criteria not included in this process, and (3) identify new clinical and other features of these conditions. For this reason, we propose an initiative to update periodically the diagnostic criteria for NF1 and LGSS.


Subject(s)
Neurofibromatosis 1 , Cafe-au-Lait Spots/genetics , Consensus , Genetic Testing , Humans , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/genetics
11.
Sci Transl Med ; 12(572)2020 12 02.
Article in English | MEDLINE | ID: mdl-33268510

ABSTRACT

Late infantile Batten disease (CLN2 disease) is an autosomal recessive, neurodegenerative lysosomal storage disease caused by mutations in the CLN2 gene encoding tripeptidyl peptidase 1 (TPP1). We tested intraparenchymal delivery of AAVrh.10hCLN2, a nonhuman serotype rh.10 adeno-associated virus vector encoding human CLN2, in a nonrandomized trial consisting of two arms assessed over 18 months: AAVrh.10hCLN2-treated cohort of 8 children with mild to moderate disease and an untreated, Weill Cornell natural history cohort consisting of 12 children. The treated cohort was also compared to an untreated European natural history cohort of CLN2 disease. The vector was administered through six burr holes directly to 12 sites in the brain without immunosuppression. In an additional safety assessment under a separate protocol, five children with severe CLN2 disease were treated with AAVrh.10hCLN2. The therapy was associated with a variety of expected adverse events, none causing long-term disability. Induction of systemic anti-AAVrh.10 immunity was mild. After therapy, the treated cohort had a 1.3- to 2.6-fold increase in cerebral spinal fluid TPP1. There was a slower loss of gray matter volume in four of seven children by MRI and a 42.4 and 47.5% reduction in the rate of decline of motor and language function, compared to Weill Cornell natural history cohort (P < 0.04) and European natural history cohort (P < 0.0001), respectively. Intraparenchymal brain administration of AAVrh.10hCLN2 slowed the progression of disease in children with CLN2 disease. However, improvements in vector design and delivery strategies will be necessary to halt disease progression using gene therapy.


Subject(s)
Dependovirus , Neuronal Ceroid-Lipofuscinoses , Aminopeptidases/genetics , Brain , Child , Dependovirus/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Genetic Therapy , Humans , Magnetic Resonance Imaging , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/therapy , Tripeptidyl-Peptidase 1
12.
Neurooncol Adv ; 2(1): vdaa095, 2020.
Article in English | MEDLINE | ID: mdl-32939452

ABSTRACT

BACKGROUND: Spinal neurofibromas (SNFs) in neurofibromatosis type 1 (NF1) can cause progressive spinal cord compression and neurological dysfunction. The MEK inhibitor selumetinib shrinks the majority of plexiform neurofibromas (PNs) in patients with NF1. We assessed the effect of selumetinib on SNF. METHODS: Pediatric and adult patients with NF1 and inoperable PN participating in phase 2 studies of selumetinib for PN were included in this analysis if they had SNF and serial spine magnetic resonance imaging (MRI). Selumetinib was administered orally at the recommended dose of 25 mg/m2/dose twice daily (max 50 mg b.i.d.; 1 cycle = 28 days). We qualitatively assessed the effect of selumetinib on SNF-related spinal canal distortion, cerebrospinal fluid distribution, and spinal cord deformity on MRI. RESULTS: Twenty-four patients (18 male), median age 16.9 years (range, 6.2-60.3), had SNF, 22 of which were associated with the same nerves as the target PN assessed on the clinical trial. Twenty patients had spinal cord deformity. Twenty-three patients completed at least 12 treatment cycles to date. Eighteen patients showed subtle to a marked improvement in SNF burden, 5 remained stable, and no worsening was observed during treatment. CONCLUSIONS: This is the first study describing the effect of selumetinib on SNF. Of 24 patients, 18 exhibited some improvement of SNF burden on imaging. These findings suggest that selumetinib may prevent the worsening of cord compression, potentially reducing the need for surgical interventions in select patients or benefitting patients who do not have a surgical option. Prospective evaluation of the clinical benefit of selumetinib for SNF is warranted.

13.
Oncologist ; 25(7): e1109-e1116, 2020 07.
Article in English | MEDLINE | ID: mdl-32272491

ABSTRACT

Early-phase clinical trials using oral inhibitors of MEK, the mitogen-activated protein kinase kinase, have demonstrated benefit for patients with neurofibromatosis type 1 (NF1)-associated tumors, particularly progressive low-grade gliomas and plexiform neurofibromas. Given this potential of MEK inhibition as an effective medical therapy, the use of targeted agents in the NF1 population is likely to increase substantially. For clinicians with limited experience prescribing MEK inhibitors, concern about managing these treatments may be a barrier to use. In this manuscript, the Clinical Care Advisory Board of the Children's Tumor Foundation reviews the published experience with MEK inhibitors in NF1 and outlines recommendations for side-effect management, as well as monitoring guidelines. These recommendations can serve as a beginning framework for NF providers seeking to provide the most effective treatments for their patients. IMPLICATIONS FOR PRACTICE: Neurofibromatosis type 1 (NF1) clinical care is on the cusp of a transformative shift. With the success of recent clinical trials using MEK inhibitors, an increasing number of NF1 patients are being treated with MEK inhibitors for both plexiform neurofibromas and low-grade gliomas. The use of MEK inhibitors is likely to increase substantially in NF1. Given these changes, the Clinical Care Advisory Board of the Children's Tumor Foundation has identified a need within the NF1 clinical community for guidance for the safe and effective use of MEK inhibitors for NF1-related tumors. This article provides a review of the published experience of MEK inhibitors in NF1 and provides recommendations for monitoring and management of side effects.


Subject(s)
Antineoplastic Agents , Neurofibroma, Plexiform , Neurofibromatosis 1 , Antineoplastic Agents/therapeutic use , Child , Humans , Mitogen-Activated Protein Kinase Kinases , Neurofibroma, Plexiform/drug therapy , Neurofibromatosis 1/drug therapy , Protein Kinase Inhibitors/adverse effects
15.
World J Nucl Med ; 17(4): 241-248, 2018.
Article in English | MEDLINE | ID: mdl-30505221

ABSTRACT

Rapidly enlarging, painful plexiform neurofibromas (PN) in neurofibromatosis type 1 (NF1) patients are at higher risk for harboring a malignant peripheral nerve sheath tumor (MPNST). Fludeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has been used to support more invasive diagnostic and therapeutic interventions. However, PET/CT imparts an untoward radiation hazard to this population with tumor suppressor gene impairment. The use of FDG PET coupled with magnetic resonance imaging (MRI) rather than CT is a safer alternative but its relative diagnostic sensitivity requires verification. Ten patients (6 females, 4 males, mean age 27 years, range 8-54) with NF1 and progressive PN were accrued from our institutional NF Clinic. Indications for PET scanning included increasing pain and/or progressive disability associated with an enlarging PN on serial MRIs. Following a clinically indicated whole-body FDG PET/CT, a contemporaneous PET/MRI was obtained using residual FDG activity with an average time interval of 3-4 h FDG-avid lesions were assessed for both maximum standardized uptake value (SUVmax) from PET/CT and SUVmax from PET/MR and correlation was made between the two parameters. 26 FDG avid lesions were detected on both PET/CT and PET/MR with an accuracy of 100%. SUVmax values ranged from 1.4-10.8 for PET/CT and from 0.2-5.9 for PET/MRI. SUVmax values from both modalities demonstrated positive correlation (r = 0.45, P < 0.001). PET/MRI radiation dose was significantly lower (53.35% ± 14.37% [P = 0.006]). In conclusion, PET/MRI is a feasible alternative to PET/CT in patients with NF1 when screening for the potential occurrence of MPNST. Reduction in radiation exposure approaches 50% compared to PET/CT.

16.
J Psychopathol Behav Assess ; 40(3): 367-375, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30270970

ABSTRACT

To compare community diagnoses of Autism Spectrum Disorder (ASD) reported by parents to consensus diagnoses made using standardized tools plus clinical observation. 87 participants (85% male, average age 7.4 years), with reported community diagnosis of ASD were evaluated using the Autism Diagnostic Observation Schedule) (ADOS-2), Differential Ability Scale (DAS-II), and Vineland Adaptive Behavior Scales (VABS-II). Detailed developmental and medical history was obtained from all participants. Diagnosis was based on clinical consensus of at least two expert clinicians, using test results, clinical observations, and parent report. 23% of participants with a reported community diagnosis of ASD were classified as non-spectrum based on our consensus diagnosis. ASD and non-spectrum participants did not differ on age at evaluation and age of first community diagnosis. Non-verbal IQ scores and Adaptive Behavior Composite scores were significantly higher in the non-spectrum group compared to the ASD group (104.5 ± 21.7 vs. 80.1 ± 21.6, p < .01; 71.1 ± 15 versus 79.5 ± 17.6, p < .05, respectively). Participants enrolled with community diagnosis of PDD-NOS were significantly more likely to be classified as non-spectrum on the study consensus diagnosis than Participants with Autism or Asperger (36% versus 9.5%, Odds Ratio = 5.4, p < .05). This study shows suboptimal agreement between community diagnoses of ASD and consensus diagnosis using standardized instruments. These findings are based on limited data, and should be further studied, taking into consideration the influence of DSM 5 diagnostic criteria on ASD prevalence.

17.
Lancet Child Adolesc Health ; 2(8): 582-590, 2018 08.
Article in English | MEDLINE | ID: mdl-30119717

ABSTRACT

BACKGROUND: Late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease, characterised by rapid psychomotor decline and epilepsy, is caused by deficiency of the lysosomal enzyme tripeptidyl peptidase 1. We aimed to analyse the characteristics and rate of progression of CLN2 disease in an international cohort of patients. METHODS: We did an observational cohort study using data from two independent, international datasets of patients with untreated genotypically confirmed CLN2 disease: the DEM-CHILD dataset (n=74) and the Weill Cornell Medical College (WCMC) dataset (n=66). Both datasets included quantitative rating assessments with disease-specific clinical domain scores, and disease course was measured longitudinally in 67 patients in the DEM-CHILD cohort. We analysed these data to determine age of disease onset and diagnosis, as well as disease progression-measured by the rate of decline in motor and language summary scores (on a scale of 0-6 points)-and time from first symptom to death. FINDINGS: In the combined DEM-CHILD and WCMC dataset, median age was 35·0 months (IQR 24·0-38·5) at first clinical symptom, 37·0 months (IQR 35·0 -42·0) at first seizure, and 54·0 months (IQR 47·5-60·0) at diagnosis. Of 74 patients in the DEM-CHILD dataset, the most common first symptoms of disease were seizures (52 [70%]), language difficulty (42 [57%]), motor difficulty (30 [41%]), behavioural abnormality (12 [16%]), and dementia (seven [9%]). Among the 41 patients in the DEM-CHILD dataset for whom longitudinal assessments spanning the entire disease course were available, a rapid annual decline of 1·81 score units (95% CI 1·50-2·12) was seen in motor-language summary scores from normal (score of 6) to no function (score of 0), which occurred over approximately 30 months. Among 53 patients in the DEM-CHILD cohort with available data, the median time between onset of first disease symptom and death was 7·8 years (SE 0·9) years. INTERPRETATION: In view of its natural history, late-infantile CLN2 disease should be considered in young children with delayed language acquisition and new onset of seizures. CLN2 disease has a largely predictable time course with regard to the loss of language and motor function, and these data might serve as historical controls for the assessment of current and future therapies. FUNDING: EU Seventh Framework Program, German Ministry of Education and Research, EU Horizon2020 Program, National Institutes of Health, Nathan's Battle Foundation, Cures Within Reach Foundation, Noah's Hope Foundation, Hope4Bridget Foundation.


Subject(s)
Neuronal Ceroid-Lipofuscinoses/diagnosis , Adolescent , Child , Child, Preschool , Cohort Studies , Disease Progression , Female , Humans , Infant , Longitudinal Studies , Male , Tripeptidyl-Peptidase 1
18.
Genet Med ; 20(7): 671-682, 2018 07.
Article in English | MEDLINE | ID: mdl-30006586

ABSTRACT

DISCLAIMER: This practice resource is designed primarily as an educational resource for medical geneticists and other clinicians to help them provide quality medical services. Adherence to this practice resource is completely voluntary and does not necessarily assure a successful medical outcome. This practice resource should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this practice resource. Clinicians also are advised to take notice of the date this practice resource was adopted, and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures. PURPOSE: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder that is caused by a heterozygous loss-of-function variant in the tumor suppressor gene NF1; it affects ~1/1,900-1/3,500 people worldwide. The disorder is associated with an 8-15-year reduction in average life expectancy in both men and women, primarily due to malignant neoplasms and cardiovascular causes. METHODS: A work group of experts sought to determine the prevalence, morbidity and mortality, and available treatments of common and emerging NF1-related clinical problems in adults. Work-group members identified peer-reviewed publications from PubMed. Publications derived from populations and multi-institution cohorts were prioritized. Recommendations for management arose by consensus from this literature and the collective expertise of the authors. RESULTS: Malignant peripheral nerve sheath tumor (MPNST), breast cancer, cutaneous neurofibromas, and significant psychiatric and neurologic diagnoses are common problems in patients with NF1. CONCLUSION: Patient education and sensitization to worrisome signs and symptoms such as progressive severe pain (MPNST), changes in tumor volume (MPNST), new, unexplained neurologic symptoms (MPNST, brain tumors), and diaphoresis/palpitations (pheochromocytoma) are important. Although many issues in adults with NF1 can be managed by an internist or family physician, we strongly encourage evaluation by, and care coordination with, a specialized NF1 clinic.


Subject(s)
Neurofibromatosis 1/complications , Neurofibromatosis 1/therapy , Genetic Testing/standards , Genetics, Medical/methods , Genomics/standards , Humans , Neurofibromatosis 1/genetics , Neurofibromatosis 1/physiopathology , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , United States
20.
J Neurosurg ; 120(4): 854-63, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24484234

ABSTRACT

OBJECT: The poor outcome of malignant gliomas is largely due to local invasiveness. Previous studies suggest that gliomas secrete excess glutamate and destroy surrounding normal peritumoral brain by means of excitotoxic mechanisms. In this study the authors assessed the effect on survival of 2 glutamate modulators (riluzole and memantine) in rodent glioma models. METHODS: In an in vitro growth inhibition assay, F98 and 9L cells were exposed to riluzole and memantine. Mouse cerebellar organotypic cultures were implanted with F98 glioma cells and treated with radiation, radiation + riluzole, or vehicle and assessed for tumor growth. Safety and tolerability of intracranially implanted riluzole and memantine CPP:SA polymers were tested in F344 rats. The efficacy of these drugs was tested against the 9L model and riluzole was further tested with and without radiation therapy (RT). RESULTS: In vitro assays showed effective growth inhibition of both drugs on F98 and 9L cell lines. F98 organotypic cultures showed reduced growth of tumors treated with radiation and riluzole in comparison with untreated cultures or cultures treated with radiation or riluzole alone. Three separate efficacy experiments all showed that localized delivery of riluzole or memantine is efficacious against the 9L gliosarcoma tumor in vivo. Systemic riluzole monotherapy was ineffective; however, riluzole given with RT resulted in improved survival. CONCLUSIONS: Riluzole and memantine can be safely and effectively delivered intracranially via polymer in rat glioma models. Both drugs demonstrate efficacy against the 9L gliosarcoma and F98 glioma in vitro and in vivo. Although systemic riluzole proved ineffective in increasing survival, riluzole acted synergistically with radiation and increased survival compared with RT or riluzole alone.


Subject(s)
Brain Neoplasms/drug therapy , Drug Delivery Systems/methods , Excitatory Amino Acid Antagonists/therapeutic use , Glioma/drug therapy , Memantine/therapeutic use , Riluzole/therapeutic use , Animals , Cell Line, Tumor , Disease Models, Animal , Excitatory Amino Acid Antagonists/administration & dosage , Memantine/administration & dosage , Mice , Polymers/administration & dosage , Polymers/therapeutic use , Rats , Riluzole/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...