Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 49(37): 13029-13043, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32915181

ABSTRACT

Pyridinemethanolate and oxyquinoline derivatives of previously reported late transition metal-aluminum heterobimetallic complexes containing iridium and rhodium have been synthesized and characterized. A combination of experimental and computational data permits a direct comparison of the electronic effects of each novel aluminum-containing ligand in our library on the late transition metal centers. Alongside electronic data of previously reported oxypyridine bridged systems, we conclude that the addition of a dialkylaluminum(X) (X = anion) fragment does not significantly perturb the electron donor ability of the bridging ligand. Anions bound to the aluminum are also shown to behave similarly. The overall library, thus, suggests that the best predictor of the electron donor ability of an alkylaluminum-containing ligand to a transition metal is the donor power of the bridging ligand.

2.
Eur J Inorg Chem ; 2020(31): 2958-2967, 2020 Aug 23.
Article in English | MEDLINE | ID: mdl-32879618

ABSTRACT

A set of novel, easily synthesized aluminum complexes, Al[κ2-N,N-2-(methylamino)pyridine]2R (R = Et, iBu) are reported. When subjected to 1 atm of CO2 pressure, each hemilabile pyridine arm dissociates and facilitates cooperative activation of the CO2 substrate reminiscent of a Frustrated Lewis Pair. This reaction has limited precedent for Al/N based Lewis Pair systems, and this is the first system readily shown to sequester multiple equivalents of CO2 per aluminum center. The ethyl variant then reacts further, inserting a third equivalent of CO2 into the aluminum alkyl to generate an aluminum carboxylate. Examples of this type of reactivity are rare under thermal conditions. A joint experimental/computational study supports the proposed reaction mechanism.

3.
Inorg Chem ; 58(19): 12635-12645, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31532661

ABSTRACT

Previously reported heterobimetallic rhodium-aluminum and iridium-aluminum alkyl complexes are shown to activate hydrogen, generating the corresponding alkane. Kinetic data indicate a mechanistic difference between the iridium- and rhodium-based systems. In both cases the transition metal is an active participant in the release of alkane from the aluminum center. For iridium-aluminum species, experimental mechanistic data suggest that multiple pathways occur concomitantly with each other: one being the oxidative addition of hydrogen followed by proton transfer resulting in alkane generation. Computational data indicate a reasonable barrier to formation of an iridium dihydride intermediate observed experimentally. In the case of the rhodium-aluminum species, hydrides are not observed spectroscopically, though a reasonable barrier to formation of this thermodynamically unstable species has been calculated. Alternative mechanistic possibilities are discussed and explored computationally. Cooperative hydrogenolysis mechanisms are computed to be energetically unfeasible for both metal centers.

4.
Dalton Trans ; 48(24): 8782-8790, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31123745

ABSTRACT

We demonstrate the synthesis and characterization of a new class of late transition metal-aluminum heterobimetallic complexes. A bridging ligand which both chelates the transition metal and binds the aluminum via an alkoxide was employed to impart stability to the bimetallic system. Novel rhodium-aluminum heterobimetallic complexes Rh(DPPE)(DPPP-O-AliBu2Cl) and Rh(DPPP-O-AliBu2)(DPPP-O-AliBu2Cl) are synthesized and spectroscopically characterized.

5.
Chembiochem ; 20(2): 172-180, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30098105

ABSTRACT

Phosphatidylinositol (PI) lipids control critical biological processes, so aberrant biosynthesis often leads to disease. As a result, the capability to track the production and localization of these compounds in cells is vital for elucidating their complex roles. Herein, we report the design, synthesis, and application of clickable myo-inositol probe 1 a for bioorthogonal labeling of PI products. To validate this platform, we initially conducted PI synthase assays to show that 1 a inhibits PI production in vitro. Fluorescence microscopy experiments next showed probe-dependent imaging in T-24 human bladder cancer and Candida albicans cells. Growth studies in the latter showed that replacement of myo-inositol with probe 1 a led to an enhancement in cell growth. Finally, fluorescence-based TLC analysis and mass spectrometry experiments support the labeling of PI lipids. This approach provides a promising means for tracking the complex biosynthesis and trafficking of these lipids in cells.


Subject(s)
Fluorescent Dyes/chemistry , Inositol/chemistry , Metabolic Engineering , Phosphatidylinositols/chemistry , Candida albicans/cytology , Candida albicans/growth & development , Candida albicans/metabolism , Cells, Cultured , Click Chemistry , Fluorescent Dyes/chemical synthesis , Humans , Inositol/chemical synthesis , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...