Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Reprod Dev ; 84(8): 686-692, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28586125

ABSTRACT

Sperm motility-initiating substance (SMIS) is a key protein for internal fertilization of the newt, Cynops pyrrhogaster, and commonly enhances forward sperm motility in some amphibian species, including external fertilizers. SMIS action varies among different species in correlation with a species-specific reproductive environment. In the present study, we identified the gene of C. ensicauda SMIS (CeSMIS) and examined the mechanism of SMIS action with reference to that of the closely related Cynops species. The CeSMIS was identified by a 176-amino acid sequence including seven amino acids critical for the initiation of sperm motility. The amino acid sequence showed 91% homology to the whole sequence of C. pyrrhogaster SMIS (CpSMIS). By immunostaining with an anti-CpSMIS antibody, CeSMIS was shown to be localized in the outer layer of the egg jelly. A peptide presenting the active site of SMIS was observed to bind to the axial rod of the midpiece in C. ensicauda sperm. The localization and binding patterns of CeSMIS were fundamentally similar to those of CpSMIS. However, the SMIS peptide did not induce forward motility of C. ensicauda sperm, although it induced a fast wave of the undulating membrane. Forward sperm motility was induced in the egg jelly extract containing CeSMIS. These results suggest that the mechanism of initiation of sperm motility is differentiated between C. ensicauda and C. pyrrhogaster.


Subject(s)
Egg Proteins/physiology , Salamandridae/physiology , Sperm Motility/physiology , Sperm-Ovum Interactions/physiology , Spermatozoa/physiology , Animals , Female , Male , Oviducts/physiology
2.
PLoS One ; 11(8): e0160445, 2016.
Article in English | MEDLINE | ID: mdl-27579691

ABSTRACT

Internal fertilization ensures successful reproduction of tetrapod vertebrates on land, although how this mode of reproduction evolved is unknown. Here, we identified a novel gene encoding sperm motility-initiating substance (SMIS), a key protein for the internal fertilization of the urodele Cynops pyrrhogaster by Edman degradation of an isolated protein and subsequent reverse transcription polymerase chain reaction. The SMIS gene encoded a 150 amino-acid sequence including the cysteine knot (CK) motif. No gene with substantial similarity to the SMIS was in the data bank of any model organisms. An active site of the SMIS was in the C-terminal region of the 2nd loop of CK motif. A synthetic peptide including the active site sequence bound to the midpiece and initiated/enhanced the circular motion of C. pyrrhogaster sperm, which allows penetration of the egg jelly specialized for the internal fertilization of this species. The synthetic peptide bound to whole sperm of Rhacophorus arboreus and enhanced the rotary motion, which is adapted to propel the sperm through egg coat matrix specialized for arboreal reproduction, while it bound to the tip of head and tail of Bufo japonicus sperm, and enhanced the vibratory motion, which is suited to sperm penetration through the egg jelly specialized for the reproduction of that species in freshwater. The polyclonal antibody against the active site of the SMIS specifically bound to egg coat matrix of R. arboreus. These findings suggest that diversification of amphibian reproductive modes accompanies the specialization of egg coat and the adaptation of sperm motility to penetrate the specialized egg coat, and SMIS acts as the sperm motility enhancer of anurans and urodeles that might facilitate to adaptively optimize sperm motility for allowing the establishment of internal fertilization.


Subject(s)
Amphibian Proteins , Evolution, Molecular , Sperm Motility/physiology , Sperm-Ovum Interactions/physiology , Spermatozoa/physiology , Urodela/physiology , Amino Acid Motifs , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Female , Male , Species Specificity
3.
Int J Mol Sci ; 15(9): 15210-24, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25170808

ABSTRACT

A protease of sperm in the newt Cynops pyrrhogaster that is released after the acrosome reaction (AR) is proposed to lyse the sheet structure on the outer surface of egg jelly and release sperm motility-initiating substance (SMIS). Here, we found that protease activity in the sperm head was potent to widely digest substrates beneath the sperm. The protease activity measured by fluorescein thiocarbamoyl-casein digestion was detected in the supernatant of the sperm after the AR and the activity was inhibited by 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), an inhibitor for serine or cysteine protease, suggesting the release of serine and/or cysteine proteases by AR. In an in silico analysis of the testes, acrosins and 20S proteasome were identified as possible candidates of the acrosomal proteases. We also detected another AEBSF-sensitive protease activity on the sperm surface. Fluorescence staining with AlexaFluor 488-labeled AEBSF revealed a cysteine protease in the principal piece; it is localized in the joint region between the axial rod and undulating membrane, which includes an axoneme and produces powerful undulation of the membrane for forward sperm motility. These results indicate that AEBSF-sensitive proteases in the acrosome and principal piece may participate in the initiation of sperm motility on the surface of egg jelly.


Subject(s)
Acrosin/metabolism , Cysteine Proteases/metabolism , Salamandridae/metabolism , Serine Proteases/metabolism , Sperm Motility , Acrosin/chemistry , Acrosin/genetics , Acrosome/drug effects , Acrosome/enzymology , Acrosome/physiology , Amino Acid Sequence , Animals , Catalytic Domain , Cysteine Proteases/chemistry , Cysteine Proteases/genetics , Cysteine Proteinase Inhibitors/pharmacology , Male , Molecular Sequence Data , Proteasome Endopeptidase Complex/metabolism , Salamandridae/physiology , Serine Proteases/chemistry , Serine Proteases/genetics , Serine Proteinase Inhibitors/pharmacology , Substrate Specificity , Sulfones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...