Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 111(7): 2638-43, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24497505

ABSTRACT

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice (APP-Tg) with DBA/2 genetic backgrounds have significantly lower levels of Aß accumulation compared with SJL and C57BL/6 mice. We then applied brain transcriptomics to reveal the genes in DBA/2 that suppress Aß accumulation. To avoid detecting secondarily affected genes by Aß, we used non-Tg mice in the absence of Aß pathology and selected candidate genes differently expressed in DBA/2 mice. Additional transcriptome analysis of APP-Tg mice with mixed genetic backgrounds revealed kinesin light chain-1 (Klc1) as an Aß modifier, indicating a role for intracellular trafficking in Aß accumulation. Aß levels correlated with the expression levels of Klc1 splice variant E and the genotype of Klc1 in these APP-Tg mice. In humans, the expression levels of KLC1 variant E in brain and lymphocyte were significantly higher in AD patients compared with unaffected individuals. Finally, functional analysis using neuroblastoma cells showed that overexpression or knockdown of KLC1 variant E increases or decreases the production of Aß, respectively. The identification of KLC1 variant E suggests that the dysfunction of intracellular trafficking is a causative factor of Aß pathology. This unique combination of distinct mouse strains and model mice with transcriptomics is expected to be useful for the study of genetic mechanisms of other complex diseases.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Microtubule-Associated Proteins/metabolism , Protein Isoforms/metabolism , Alzheimer Disease/genetics , Animals , Brain/metabolism , Crosses, Genetic , Gene Expression Profiling , Humans , Kinesins , Mice , Microtubule-Associated Proteins/genetics , Protein Isoforms/genetics , Species Specificity
2.
Dement Geriatr Cogn Disord ; 30(4): 302-8, 2010.
Article in English | MEDLINE | ID: mdl-20881395

ABSTRACT

BACKGROUND/AIMS: A single-nucleotide polymorphism (SNP) in the KIBRA gene, rs17070145, was reported to be significantly associated with episodic memory in cognitively normal cohorts. This observation has expanded genetic studies on KIBRA to Alzheimer's disease (AD). Importantly, the association between KIBRA and episodic memory in AD has never been addressed. In this study, we investigated whether the KIBRA rs17070145 SNP influences AD episodic memory and the disease in a Japanese cohort. METHODS: Blood samples from 346 AD patients and 375 normal cognitive controls were collected and genotyped for rs17070145. Episodic memory was measured in 32 AD patients, diagnosed for the first time, by use of the Rivermead Behavioral Memory Test (RBMT). RESULTS: We found that KIBRA C allele carriers scored significantly lower than KIBRA non-C carriers on both RBMT total profile score (p = 0.042, effect size = 0.84) and RBMT total screening score (p < 0.001, effect size = 1.42). The KIBRA gene did not show association with AD in our Japanese cohort. CONCLUSION: Our results evidence a strong association between the KIBRA gene and episodic memory impairment in AD, but show no influence on AD in our Japanese cohort. We propose that KIBRA might have an effect similar to cognitive reserve.


Subject(s)
Alzheimer Disease/genetics , Asian People/genetics , Mental Recall/physiology , Proteins/genetics , Aged , Alzheimer Disease/ethnology , Analysis of Variance , Case-Control Studies , Cohort Studies , Female , Humans , Intracellular Signaling Peptides and Proteins , Japan , Male , Middle Aged , Neuropsychological Tests , Phosphoproteins , Polymorphism, Single Nucleotide , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...