Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 5335, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35351948

ABSTRACT

Humans demonstrate behavioural advantages (biases) towards particular dimensions (colour or shape of visual objects), but such biases are significantly altered in neuropsychological disorders. Recent studies have shown that lesions in the prefrontal cortex do not abolish dimensional biases, and therefore suggest that such biases might not depend on top-down prefrontal-mediated attention and instead emerge as bottom-up processing advantages. We hypothesised that if dimensional biases merely emerge from an enhancement of object features, the presence of visual objects would be necessary for the manifestation of dimensional biases. In a specifically-designed working memory task, in which macaque monkeys and humans performed matching based on the object memory rather than the actual object, we found significant dimensional biases in both species, which appeared as a shorter response time and higher accuracy in the preferred dimension (colour and shape dimension in humans and monkeys, respectively). Moreover, the mnemonic demands of the task influenced the magnitude of dimensional bias. Our findings in two primate species indicate that the dichotomy of top-down and bottom-up processing does not fully explain the emergence of dimensional biases. Instead, dimensional biases may emerge when processed information regarding visual object features interact with mnemonic and executive functions to guide goal-directed behaviour.


Subject(s)
Attention , Memory, Short-Term , Animals , Executive Function , Haplorhini , Humans , Prefrontal Cortex/physiology
2.
Med Phys ; 29(12): 2799-805, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12512713

ABSTRACT

A modified back-projection approach deduced from an exact reconstruction solution was applied to our photoacoustic tomography of the optical absorption in biological tissues. Pulses from a Ti:sapphire laser (4.7 ns FWHM at 789.2 nm) were employed to generate a distribution of photoacoustic sources in a sample. The sources were detected by a wide-band nonfocused ultrasonic transducer at different positions around the imaging cross section perpendicular to the axis of the laser irradiation. Reconstructed images of phantoms made from chicken breast tissue agreed well with the structures of the samples. The resolution in the imaging cross section was experimentally demonstrated to be better than 60 microm when a 10 MHz transducer (140% bandwidth at -60 dB) was employed, which was nearly diffraction limited by the detectable photoacoustic waves of the highest frequency.


Subject(s)
Image Interpretation, Computer-Assisted , Lasers , Phantoms, Imaging , Acoustics , Algorithms , Animals , Chickens , Image Processing, Computer-Assisted , Models, Statistical , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...