Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2404806, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857437

ABSTRACT

Electrocatalytic water splitting driven by sustainable energy is a clean and promising water-chemical fuel conversion technology for the production of high purity green hydrogen. However, the sluggish kinetics of anodic oxygen evolution reaction (OER) pose challenges for large-scale hydrogen production, limiting its efficiency and safety. Recently, the anodic OER has been replaced by a nucleophilic oxidation reaction (NOR) with biomass as the substrate and coupled with hydrogen evolution reaction (HER), which has attracted great interest. Anode NOR offers faster kinetics, generates high-value products, and reduces energy consumption. By coupling NOR with hydrogen evolution reaction, hydrogen production efficiency can be enhanced while yielding high-value oxidation products or degrading pollutants. Therefore, NOR-coupled HER hydrogen production is another new green electrolytic hydrogen production strategy after electrolytic water hydrogen production, which is of great significance for realizing sustainable energy development and global decarbonization. This review explores the potential of nucleophilic oxidation reactions as an alternative to OER and delves into NOR mechanisms, guiding future research in NOR-coupled hydrogen production. It assesses different NOR-coupled production methods, analyzing reaction pathways and catalyst effects. Furthermore, it evaluates the role of electrolyzers in industrialized NOR-coupled hydrogen production and discusses future prospects and challenges. This comprehensive review aims to advance efficient and economical large-scale hydrogen production. This article is protected by copyright. All rights reserved.

2.
Chemistry ; 18(41): 13142-8, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-22915377

ABSTRACT

Mesoporous Pt-Ru alloy films with various compositions were synthesized by electrochemical plating in an aqueous surfactant solution. After the removal of surfactants, continuous mesoporous Pt-Ru alloy films possessing uniform mesopores with diameter about 7 nm were obtained. The Ru content in the films could be controlled from 0 to 13 at % by changing the precursor compositions. For all the films, the mesostructural periodicities and the mesopore sizes in the films were not changed. Due to the mesoporous structure and the doped Ru content, our mesoporous Pt-Ru films showed superior electrocatalytic activity for methanol oxidation reaction in comparison with the commercially available Pt catalyst.

3.
Dalton Trans ; 41(4): 1210-5, 2012 Jan 28.
Article in English | MEDLINE | ID: mdl-22116066

ABSTRACT

Preparation of Ni nanoparticles between montmorillonite layers using dimethylaminoborane (DMAB) as a reducing agent is reported. The DMAB molecules are first intercalated into the interlayer space of Ni-montmorillonite (Ni-mont). Then, as a result of a heating process, the DMAB is decomposed to release electrons for the reduction of the Ni ions. From high-resolution TEM images, it is demonstrated that the deposited Ni nanoparticles with about 1-2 nm in size are formed uniformly over the entire area of the Ni-mont matrix. Considering the gallery height calculated by subtracting the silicate sheet thickness from the basal spacing (1.30 nm), the morphology of the formed Ni nanoparticles in the interlayer space is thought to be disc-like in shape with a thickness of 0.3-0.4 nm and an average lateral size of 1.2 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...