Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(6): e27160, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509953

ABSTRACT

Objective: Retinal vein occlusion (RVO) can lead to visual impairment, but the development of collateral vessels can sometimes mitigate significant damage. This study aimed to investigate the relationship between collateral vessels and hypertension, the most common underlying condition associated with RVO, by comparing spontaneously hypertensive rats (SHRs) and wild-type Wister rats (WWRs). We also examined the differences between WWRs and SHRs in terms of sphingosine 1-phosphate receptor 1 (S1PR1) expression and its product nitric oxide synthase 3 (NOS3) expression, which are involved in the formation of collateral vessels after vascular occlusion. Methods: Laser photocoagulation (PC) was used to occlude one randomly selected retinal vein in WWRs and SHRs, and the area surrounding the occluded vessel was examined using optical coherence tomography angiography. If reperfusion of the occluded vessel occurred within 2 weeks, the vessel was re-occluded repeatedly by PC. The number of eyes with successfully occluded vessels accompanied by collateral vessels was recorded. Then, WWRs and SHRs were divided into the following four groups: 1) control (no treatment), 2) vehicle (20% DMSO), 3) S1PR1 agonist (2 mg/mL SEW2871), and 4) S1PR1 antagonist (0.25 mg/mL VPC 23019) groups. The drugs were administered intravitreally in all groups except the control. The number of laser shots required for successful RVO was recorded. Histological evaluation and quantitative real-time PCR of S1PR1 and NOS3 were performed to elucidate the mechanisms underlying collateral vessel formation. Results: The proportion of eyes achieving successful vein occlusion was lower in SHRs (4/12 eyes, 33.3%) than in WWRs (8/10 eyes, 80%, p = 0.043). NOS3 expression at 6 h after PC was significantly higher in WWRs than in SHRs (p = 0.021). In WWRs treated with SEW2871, vein occlusion failed in 7 of 10 eyes (70%). The expression of NOS3 was significantly higher in the SEW2871 treatment group than in the untreated group (p < 0.001). Furthermore, NOS3 expression was significantly higher after SEW2871 treatment in WWRs than in SHRs (p = 0.011). Conclusion: In hypertensive environments, collateral vessels are less likely to develop, and S1PR1 may be involved in this phenomenon.

2.
Langmuir ; 38(18): 5812-5819, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35476546

ABSTRACT

Hydrophilic poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) shows biocompatibility because the pendant phosphorylcholine group has the same chemical structure as the hydrophilic part of phospholipids that form cell membranes. Hollow particles can be used in various fields, such as a carrier in drug delivery systems because they can encapsulate hydrophilic drugs. In this study, vinyl group-decorated silica particles with a radius of 150 nm were covered with cross-linked PMPC based on the graft-through method. The radius of PMPC-coated silica particles increased compared to that of the original silica particles. The PMPC-coated silica particles were immersed in a hydrogen fluoride aqueous solution to remove template silica particles to prepare the hollow particles. The PMPC hollow particles were characterized by dynamic light scattering, infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy observations. The thickness of the hollow particle shell can be controlled by the polymerization solvent quality. When a poor solvent for PMPC was used for the polymerization, PMPC hollow particles with thick shells can be obtained. The PMPC hollow particles can encapsulate hydrophilic guest molecules by immersing the hollow particles in a high-concentration guest molecule solution. The biocompatible PMPC hollow particles can be used in a drug carrier.


Subject(s)
Phosphorylcholine , Silicon Dioxide , Micelles , Phosphorylcholine/chemistry , Polymethacrylic Acids/chemistry , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...