Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 27(9): 991-1003, 2021 09.
Article in English | MEDLINE | ID: mdl-34108230

ABSTRACT

Mammalian RNA interference (RNAi) is often linked to the regulation of gene expression in the cytoplasm. Synthetic RNAs, however, can also act through the RNAi pathway to regulate transcription and splicing. While nuclear regulation by synthetic RNAs can be robust, a critical unanswered question is whether endogenous functions for nuclear RNAi exist in mammalian cells. Using enhanced crosslinking immunoprecipitation (eCLIP) in combination with RNA sequencing (RNA-seq) and multiple AGO knockout cell lines, we mapped AGO2 protein binding sites within nuclear RNA. The strongest AGO2 binding sites were mapped to micro RNAs (miRNAs). The most abundant miRNAs were distributed similarly between the cytoplasm and nucleus, providing no evidence for mechanisms that facilitate localization of miRNAs in one compartment versus the other. Beyond miRNAs, most statistically significant AGO2 binding was within introns. Splicing changes were confirmed by RT-PCR and recapitulated by synthetic miRNA mimics complementary to the sites of AGO2 binding. These data support the hypothesis that miRNAs can control gene splicing. While nuclear RNAi proteins have the potential to be natural regulatory mechanisms, careful study will be necessary to identify critical RNA drivers of normal physiology and disease.


Subject(s)
Alternative Splicing , Argonaute Proteins/genetics , Eukaryotic Initiation Factors/genetics , MicroRNAs/genetics , RNA, Nuclear/genetics , Argonaute Proteins/deficiency , Base Pairing , Base Sequence , Binding Sites , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Eukaryotic Initiation Factors/deficiency , Exons , HCT116 Cells , Humans , Immunoprecipitation , Introns , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , Protein Binding , RNA, Nuclear/metabolism , Sequence Analysis, RNA
2.
Nucleic Acids Res ; 48(13): 7439-7453, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32501500

ABSTRACT

Despite two decades of study, the full scope of RNAi in mammalian cells has remained obscure. Here we combine: (i) Knockout of argonaute (AGO) variants; (ii) RNA sequencing analysis of gene expression changes and (iii) Enhanced Crosslinking Immunoprecipitation Sequencing (eCLIP-seq) using anti-AGO2 antibody to identify potential microRNA (miRNA) binding sites. We find that knocking out AGO1, AGO2 and AGO3 together are necessary to achieve full impact on steady state levels of mRNA. eCLIP-seq located AGO2 protein associations within 3'-untranslated regions. The standard mechanism of miRNA action would suggest that these associations should repress gene expression. Contrary to this expectation, associations between AGO and RNA are poorly correlated with gene repression in wild-type versus knockout cells. Many clusters are associated with increased steady state levels of mRNA in wild-type versus knock out cells, including the strongest cluster within the MYC 3'-UTR. Our results suggest that assumptions about miRNA action should be re-examined.


Subject(s)
3' Untranslated Regions , Argonaute Proteins/metabolism , Gene Silencing , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Binding Sites , HCT116 Cells , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
3.
Nucleic Acid Ther ; 27(4): 232-237, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28418770

ABSTRACT

Cholesterol (Chol) conjugation to the 5' or 3' end of antisense oligonucleotide (ASO) enables delivery to the liver, and Chol conjugation at the gap region can also be expected to improve delivery to the liver. In this study, we synthesized ASOs bearing the Chol-conjugated thiono triester and evaluated their activity and hepatic accumulation. We found that Chol conjugations at the gap region improved in vitro activity and hepatic accumulation when compared to unconjugated ASOs. However, Chol conjugation with phosphorothioate linkage did not improve in vivo activity in the liver, suggesting the importance of cleaving the phosphodiester between ASO and Chol. These results offer useful information for tuning the oligonucleotide structure to improve pharmaceutical properties and designing ASOs for multiple ligand conjugations and combinations with end modification.


Subject(s)
Cholesterol Esters/pharmacokinetics , Liver/metabolism , Oligonucleotides, Antisense/pharmacokinetics , Animals , Apolipoproteins B/genetics , Apolipoproteins B/metabolism , Gene Expression , Gene Knockdown Techniques , Male , Mice, Inbred C57BL , RNA Interference , Tissue Distribution
4.
J Biol Chem ; 286(36): 31885-95, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21771796

ABSTRACT

The clustered protocadherins (Pcdhs), Pcdh-α, -ß, and -γ, are transmembrane proteins constituting a subgroup of the cadherin superfamily. Each Pcdh cluster is arranged in tandem on the same chromosome. Each of the three Pcdh clusters shows stochastic and combinatorial expression in individual neurons, thus generating a hugely diverse set of possible cell surface molecules. Therefore, the clustered Pcdhs are candidates for determining neuronal molecular diversity. Here, we showed that the targeted deletion of DNase I hypersensitive (HS) site HS5-1, previously identified as a Pcdh-α regulatory element in vitro, affects especially the expression of specific Pcdh-α isoforms in vivo. We also identified a Pcdh-ß cluster control region (CCR) containing six HS sites (HS16, 17, 17', 18, 19, and 20) downstream of the Pcdh-γ cluster. This CCR comprehensively activates the expression of the Pcdh-ß gene cluster in cis, and its deletion dramatically decreases their expression levels. Deleting the CCR nonuniformly down-regulates some Pcdh-γ isoforms and does not affect Pcdh-α expression. Thus, the CCR effect extends beyond the 320-kb region containing the Pcdh-γ cluster to activate the upstream Pcdh-ß genes. Thus, we concluded that the CCR is a highly specific regulatory unit for Pcdh-ß expression on the clustered Pcdh genomic locus. These findings suggest that each Pcdh cluster is controlled by distinct regulatory elements that activate their expression and that the stochastic gene regulation of the clustered Pcdhs is controlled by the complex chromatin architecture of the clustered Pcdh locus.


Subject(s)
Cadherins/genetics , Multigene Family , Neuropeptides/genetics , Animals , Cadherin Related Proteins , Cell Line, Tumor , Gene Expression Regulation , Mice , Neurons , Protocadherins , Regulatory Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...