Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1841: 149086, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876319

ABSTRACT

Alcohol use disorder (AUD) remains a critical public health issue worldwide, characterized by high relapse rates often triggered by contextual cues. This research investigates the neural mechanisms behind context-induced reinstatement of alcohol-seeking behavior, focusing on the nucleus accumbens and its interactions with the prelimbic cortex, employing Male Long-Evans rats in an ABA renewal model. In our experimental setup, rats were trained to self-administer 10 % ethanol in Context A, followed by extinction of lever pressing in the presence of discrete cues in Context B. The context-induced reinstatement of ethanol-seeking was then assessed by re-exposing rats to Context A or B under extinction conditions, aiming to simulate the environmental cues' influence on relapse behaviors. Three experiments were conducted: Experiment 1 utilized Fos-immunohistochemistry to examine neuronal activation in the nucleus accumbens; Experiment 2 applied the baclofen + muscimol inactivation technique to probe the functional importance of the nucleus accumbens core; Experiment 3 used Fos-immunofluorescence along with Retrobeads injection to investigate activation of neurons projecting from the prelimbic cortex to the nucleus accumbens core. Our findings revealed significant increases in Fos-immunoreactive nuclei within the nucleus accumbens core and shell during the reinstatement phase in Context A, underscoring the environment's potent effect on ethanol-seeking behavior. Additionally, inactivation of the nucleus accumbens core markedly reduced reinstatement, and there was a notable activation of neurons from the prelimbic cortex to the nucleus accumbens core in the ethanol-associated context. These results highlight the critical role of the nucleus accumbens core and its corticostriatal projections in the neural circuitry underlying context-driven ethanol seeking.

2.
Behav Brain Res ; 448: 114435, 2023 06 25.
Article in English | MEDLINE | ID: mdl-37044222

ABSTRACT

Ethanol is the most consumed substance of abuse in the world, and its misuse may lead to the development of alcohol use disorder (AUD). High relapse rates remain a relevant problem in the treatment of AUD. Exposure to environmental cues previously associated with ethanol intake could trigger ethanol-seeking behavior. However, the neural mechanisms involved in this phenomenon are not entirely clear. In this context, cortical projections to the basolateral amygdala (BLA) play a role in appetitive and aversive learned behaviors. Therefore, we aimed to evaluate the activation of the cortical projections from the prelimbic (PL), orbitofrontal (OFC), and infralimbic (IL), to the BLA in the context-induced reinstatement of ethanol-seeking. Male Long-Evans rats were trained to self-administer 10% ethanol in Context A. Subsequently, lever pressing in the presence of the discrete cue was extinguished in Context B. After nine extinction sessions, rats underwent intracranial surgery for the unilateral injection of red fluorescent retrograde tracer into the BLA. The context-induced reinstatement of ethanol-seeking was assessed by re-exposing the rats to Context A or B under extinction conditions. Finally, we combined retrograde neuronal tracing with Fos to identify activated cortical inputs to BLA during the reinstatement of ethanol-seeking behavior. We found that PL, but not OFC or IL, retrogradely-labeled neurons from BLA presented increased Fos expression during the re-exposure to the ethanol-associated context, suggesting that PL projection to BLA is involved in the context-induced reinstatement of ethanol-seeking behavior.


Subject(s)
Alcoholism , Basolateral Nuclear Complex , Rats , Male , Animals , Ethanol/pharmacology , Extinction, Psychological , Rats, Sprague-Dawley , Amygdala/physiology , Rats, Long-Evans , Cues , Self Administration
3.
Front Physiol ; 12: 775404, 2021.
Article in English | MEDLINE | ID: mdl-34950053

ABSTRACT

Maternal separation (MS) stress is a predictive animal model for evaluating the effects of early stress exposure on alcohol use disorders (AUD). The extended amygdala (AMY) is a complex circuit involved in both stress- and ethanol-related responses. We hypothesized that MS stress may increase ethanol consumption in adulthood, as well as augment neuronal activity in extended AMY, in a sex-dependent manner. We aimed to investigate the influence of MS stress on the ethanol consumption of male and female mice, and the involvement of extended amygdala sub-nuclei in this process. The C57BL/6J pups were subjected to 180min of MS, from postnatal day (PND) 1 to 14. The control group was left undisturbed. On PND 45, mice (n=28) in cages were exposed to a bottle containing 20% ethanol (w/v) for 4h during the dark period of the light-dark cycle, for 3weeks. Afterward, mice underwent ethanol self-administration training in operant chambers under fixed ratio (FR) schedule. Then, subjects were tested under 2h sessions of a progressive-ratio (PR) schedule of reinforcement (the last ratio achieved was considered the breaking point), and at the end, a 4h session of FR schedule (binge-intake). An immunohistochemistry assay for Fos protein was performed in Nucleus Accumbens (NAcc), Bed Nucleus of Stria Terminalis (BNST), and AMY. Our results showed that in the third week of training, the female MS group consumed more ethanol than the respective control group. The MS group presented increased breakpoint parameters. Female control group and male MS group were more resistant to bitter quinine taste. Increased Fos-immunoreactive neurons (Fos-IR) were observed in the central nucleus of AMY, but not in NAcc nor BNST in male maternal-separated mice. Maternal separation stress may influence ethanol intake in adulthood, and it is dependent on the sex and reinforcement protocol.

4.
Neurosci Lett ; 745: 135551, 2021 02 06.
Article in English | MEDLINE | ID: mdl-33346074

ABSTRACT

BACKGROUND: Previous studies suggest that muscarinic cholinergic receptors might act upon the dopamine release in the mesolimbic system and alter drug-reinforcing values related to drug craving. AIMS: We examined the effects of systemic biperiden administration, a muscarinic cholinergic (M1/M4) receptor antagonist, on ethanol (dose of 2 g/Kg) conditioned place preference (CPP), neuronal activation, dopamine and its metabolites levels in the nucleus accumbens. METHODS: Thirty minutes before the ethanol-induced CPP test, mice received saline or biperiden at doses of 1.0, 5.0, or 10.0 mg/kg. The time spent in each compartment was recorded for 15 min. After the CPP protocol, animals were euthanized, and we investigated the activation of the nucleus accumbens by immunohistochemistry for Fos. We also quantified dopamine, homovanillic acid (HVA), and dihydroxyphenylacetic acid (DOPAC) levels in the nucleus accumbens by high-performance liquid chromatography (HPLC). Additionally, the rotarod was employed to evaluate the effects of biperiden on motor coordination. RESULTS: Biperiden at different doses (1.0, 5.0, and 10.0 mg/kg) blocked the expression of ethanol-induced CPP. These biperiden doses increased the number of Fos-positive cells and the dopamine turnover in the nucleus accumbens. None of the doses affected the motor coordination evaluated by the rotarod. CONCLUSIONS: Our results show that biperiden can modulate the effect of alcohol reward, and its mechanism of action may involve a change in dopamine and cholinergic mesolimbic neurotransmission.


Subject(s)
Biperiden/administration & dosage , Conditioning, Classical/drug effects , Ethanol/administration & dosage , Muscarinic Antagonists/administration & dosage , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M4/antagonists & inhibitors , Animals , Conditioning, Classical/physiology , Dopamine/metabolism , Dose-Response Relationship, Drug , Homovanillic Acid/metabolism , Injections, Intraperitoneal , Male , Mice , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M4/metabolism
5.
Behav Brain Res ; 398: 112978, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33169700

ABSTRACT

Drug addiction is a chronic mental disorder characterized by frequent relapses. Contextual cues associated with drug use to play a critical causal role in drug-seeking behavior. The hippocampus has been implicated in encoding drug associative memories. Here we examine whether the dorsal hippocampus mediates context-induced reinstatement of alcohol-seeking. Male Long-Evans rats were trained to self-administer alcohol in Context A. Alcohol self-administration was extinguished in a distinct context (Context B). On the test day, animals were re-exposed to the alcohol Context A or the extinction Context B. Next, to assess a causal role for the dorsal hippocampus in context-induced alcohol-seeking, on the test day, we injected cobalt chloride (CoCl2; a nonselective synapse inhibitor) or vehicle into the dorsal hippocampus, and 15 min later, rats were tested by re-exposing them to the drug-associated context. The re-exposure to the alcohol-associated Context A reinstated alcohol seeking and increased Fos-positive cells in the dorsal hippocampus neurons (CA1, CA3, and Dentate Gyrus). Pharmacological inactivation with cobalt chloride of the dorsal hippocampus attenuated the reinstatement of alcohol-seeking. Our data suggest that the dorsal hippocampus may be involved in context-induced alcohol-seeking behavior.


Subject(s)
Alcoholism/physiopathology , Hippocampus/physiology , Reinforcement, Psychology , Animals , Behavior, Animal/physiology , Cobalt/pharmacology , Disease Models, Animal , Extinction, Psychological/physiology , Hippocampus/drug effects , Male , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...